rdm.data {QurvE} | R Documentation |
The function calls the baranyi
function to generate curves between time zero and t
and adds some random noise to the x- and y-axes. The three growth parameters given as input values will be slightly changed to produce different growth curves. The resulting datasets can be used to test the growth.workflow
function.
Description
The function calls the baranyi
function to generate curves between time zero and t
and adds some random noise to the x- and y-axes. The three growth parameters given as input values will be slightly changed to produce different growth curves. The resulting datasets can be used to test the growth.workflow
function.
Usage
rdm.data(d, y0 = 0.05, tmax = 24, mu = 0.6, lambda = 5, A = 3, label = "Test1")
Arguments
d |
Numeric value, number of data sets. If |
y0 |
Numeric value, start growth. If |
tmax |
Numeric value, number of time points per data set. If |
mu |
Numeric value, maximum slope. If |
lambda |
Numeric value, lag-phase. If |
A |
Numeric value, maximum growth. If |
label |
Character string, condition label If |
Value
A list containing simulated data for three tests (e.g., 'organisms'):
time |
numeric matrix of size |
data |
data.frame of size |
References
Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010). grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI: 10.18637/jss.v033.i07
Examples
# Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')
rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)
# Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,
data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = 's',
suppress.messages = TRUE))
# Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,
control = growth.control(dr.parameter = 'mu.spline'))
# Inspect results
summary(drFit)
plot(drFit)