growth.drFit {QurvE} | R Documentation |
Perform a dose-response analysis on response vs. concentration data
Description
growth.drFit
serves to determine dose-response curves on every condition in a
dataset. The response parameter can be chosen from every physiological parameter in a
gcTable
table which is obtained via growth.gcFit
. growth.drFit
calls the functions growth.drFitSpline
and growth.drBootSpline
, or growth.drFitModel
to
generate a table with estimates for EC50 and respecting statistics.
Usage
growth.drFit(
gcTable,
control = growth.control(dr.method = "model", dr.model = c("gammadr", "multi2", "LL.2",
"LL.3", "LL.4", "LL.5", "W1.2", "W1.3", "W1.4", "W2.2", "W2.3", "W2.4", "LL.3u",
"LL2.2", "LL2.3", "LL2.3u", "LL2.4", "LL2.5", "AR.2", "AR.3", "MM.2"),
dr.have.atleast = 6, dr.parameter = "mu.linear", nboot.dr = 0, smooth.dr = NULL,
log.x.dr = FALSE, log.y.dr = FALSE)
)
Arguments
gcTable |
A dataframe containing the data for the dose-response curve estimation. Such table of class |
control |
A |
dr.method |
(Character) Define the method used to perform a dose-responde analysis: smooth spline fit ( |
dr.model |
(Character) Provide a list of models from the R package 'drc' to include in the dose-response analysis (if |
dr.have.atleast |
(Numeric) Minimum number of different values for the response parameter one should have for estimating a dose response curve. Note: All fit procedures require at least six unique values. Default: |
dr.parameter |
(Character or numeric) The response parameter in the output table to be used for creating a dose response curve. See |
smooth.dr |
(Numeric) Smoothing parameter used in the spline fit by smooth.spline during dose response curve estimation. Usually (not necessesary) in (0; 1]. See |
log.x.dr |
(Logical) Indicates whether |
log.y.dr |
(Logical) Indicates whether |
nboot.dr |
(Numeric) Defines the number of bootstrap samples for EC50 estimation. Use |
Details
Common response parameters used in dose-response analysis:
Linear fit:
- mu.linfit: Growth rate
- lambda.linfit: Lag time
- dY.linfit: Density increase
- A.linfit: Maximum measurement
Spline fit:
- mu.spline: Growth rate
- lambda.spline: Lag time
- A.spline: Maximum measurement
- dY.spline: Density increase
- integral.spline: Integral
Parametric fit:
- mu.model: Growth rate
- lambda.model: Lag time
- A.model: Maximum measurement
- integral.model: Integral'
Value
An object of class drFit
.
raw.data |
Data that passed to the function as |
drTable |
Dataframe containing condition identifiers, fit options, and results of the dose-response analysis. |
drBootSplines |
List of all |
drFittedSplines |
List of all |
control |
Object of class |
References
Matthias Kahm, Guido Hasenbrink, Hella Lichtenberg-Frate, Jost Ludwig, Maik Kschischo (2010). grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software, 33(7), 1-21. DOI: 10.18637/jss.v033.i07
See Also
Other growth fitting functions:
growth.gcBootSpline()
,
growth.gcFitLinear()
,
growth.gcFitModel()
,
growth.gcFitSpline()
,
growth.gcFit()
,
growth.workflow()
Examples
# Create random growth data set
rnd.data1 <- rdm.data(d = 35, mu = 0.8, A = 5, label = 'Test1')
rnd.data2 <- rdm.data(d = 35, mu = 0.6, A = 4.5, label = 'Test2')
rnd.data <- list()
rnd.data[['time']] <- rbind(rnd.data1$time, rnd.data2$time)
rnd.data[['data']] <- rbind(rnd.data1$data, rnd.data2$data)
# Run growth curve analysis workflow
gcFit <- growth.gcFit(time = rnd.data$time,
data = rnd.data$data,
parallelize = FALSE,
control = growth.control(fit.opt = 's',
suppress.messages = TRUE))
# Perform dose-response analysis
drFit <- growth.drFit(gcTable = gcFit$gcTable,
control = growth.control(dr.parameter = 'mu.spline'))
# Inspect results
summary(drFit)
plot(drFit)