proxInd.ef {QuantPsyc} | R Documentation |
Simple Mediation for use in Bootstrapping
Description
Calculates the indirect effect from proximal.med
in a form useful to send to boot
Usage
proxInd.ef(data, i)
Arguments
data |
data.frame used in |
i |
|
Details
This function is not useful of itself. It is specifically created as an intermediate step in bootstrapping the indirect effect.
Value
indirect effect that is passed to boot for each bootstrap sample
Author(s)
Thomas D. Fletcher t.d.fletcher05@gmail.com
References
Davison, A. C. & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge, UK: Cambridge University Press.
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83-104.
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limit for indirect effect: distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99-128.
See Also
Examples
require(boot)
data(tra)
tmp.tra <- tra
names(tmp.tra) <- c('x','z','m','y')
med.boot <- boot(tmp.tra, proxInd.ef, R=999)
sort(med.boot$t)[c(25,975)] #95% CI
plot(density(med.boot$t)) # Distribution of bootstapped indirect effect
summary(med.boot$t)