pkbc {QuadratiK} | R Documentation |
Poisson kernel-based clustering on the sphere
Description
The function pkbc
performs the Poisson kernel-based clustering
algorithm on the sphere based on the Poisson kernel-based densities.
Usage
pkbc(
dat,
nClust = NULL,
maxIter = 300,
stoppingRule = "loglik",
initMethod = "sampleData",
numInit = 10
)
## S4 method for signature 'ANY'
pkbc(
dat,
nClust = NULL,
maxIter = 300,
stoppingRule = "loglik",
initMethod = "sampleData",
numInit = 10
)
## S4 method for signature 'pkbc'
show(object)
Arguments
dat |
Data matrix or data.frame of data points on the sphere to be clustered. The observations in dat are normalized to ensure that they lie on the d-simensional sphere. Note that d > 1. |
nClust |
Number of clusters. It can be a single value or a numeric vector. |
maxIter |
The maximum number of iterations before a run is terminated. |
stoppingRule |
String describing the stopping rule to be used within
each run. Currently must be either:
|
initMethod |
String describing the initialization method to be used.
Currently must be |
numInit |
Number of initializations. |
object |
Object of class |
Details
The function estimates the parameter of a mixture of Poisson
kernel-based densities. The obtained estimates are used for assigning final
memberships, identifying the nClust
clusters.
Value
An S4 object of class pkbc
containing the results of the
clustering procedure based on Poisson kernel-based distributions. The object
contains the following slots:
res_k
: List of results of the Poisson kernel-based clustering
algorithm for each value of number of clusters specified in nClust
.
Each object in the list contains:
-
postProbs
Posterior probabilities of each observation for the indicated clusters. -
LogLik
Maximum value of log-likelihood function -
wcss
Values of within-cluster sum of squares computed with Euclidean distance and cosine similarity, respectively. -
params
List of estimated parameters of the mixture model-
mu
estimated centroids -
rho
estimated concentration parameters rho -
alpha
estimated mixing proportions
-
-
finalMemb
Vector of final memberships -
runInfo
List of information of the EM algorithm iterations-
lokLikVec
vector of log-likelihood values -
numIterPerRun
number of E-M iterations per run
-
input
: List of input information.
References
Golzy, M., Markatou, M. (2020) Poisson Kernel-Based Clustering on the Sphere: Convergence Properties, Identifiability, and a Method of Sampling, Journal of Computational and Graphical Statistics, 29:4, 758-770, DOI: 10.1080/10618600.2020.1740713.
Examples
#We generate three samples of 100 observations from 3-dimensional
#Poisson kernel-based densities with rho=0.8 and different mean directions
size<-100
groups<-c(rep(1, size), rep(2, size),rep(3,size))
rho<-0.8
set.seed(081423)
data1<-rpkb(size, c(1,0,0),rho,method="rejvmf")
data2<-rpkb(size, c(0,1,0),rho,method="rejvmf")
data3<-rpkb(size, c(0,0,1),rho,method="rejvmf")
dat<-rbind(data1$x,data2$x, data3$x)
#Perform the clustering algorithm with number of clusters k=3.
pkbd<- pkbc(dat, 3)