pk.test {QuadratiK} | R Documentation |
Poisson kernel-based quadratic distance test of Uniformity on the sphere
Description
This function performs the kernel-based quadratic distance goodness-of-fit
tests for Uniformity for spherical data using the Poisson kernel with
concentration parameter rho
.
Usage
pk.test(x, rho = NULL, B = 300, Quantile = 0.95)
## S4 method for signature 'ANY'
pk.test(x, rho = NULL, B = 300, Quantile = 0.95)
## S4 method for signature 'pk.test'
show(object)
Arguments
x |
A numeric d-dim matrix of data points on the Sphere S^(d-1). |
rho |
Concentration parameter of the Poisson kernel function. |
B |
Number of iterations for critical value estimation of Un (default: 300). |
Quantile |
The quantile to use for critical value estimation, 0.95 is the default value. |
object |
Object of class |
Value
An S4 object of class pk.test
containing the results of the
Poisson kernel-based tests. The object contains the following slots:
-
method
: String indicating that the Poisson Kernel-based test is performed. -
x
Data matrix. -
Un
The value of the U-statistic. -
CV_Un
The empirical critical value for Un. -
H0_Vn
A logical value indicating whether or not the null hypothesis is rejected according to Un. -
Vn
The value of the V-statistic. -
CV_Vn
The critical value for Vn computed following the asymptotic distribution. -
H0_Vn
A logical value indicating whether or not the null hypothesis is rejected according to Vn. -
rho
The value of concentration parameter used for the Poisson kernel function. -
B
Number of replications for the critical value of the U-statistic.
References
Ding, Y., Markatou, M., Saraceno, G. (2023). “Poisson Kernel-Based Tests for Uniformity on the d-Dimensional Sphere.” Statistica Sinica. doi: doi:10.5705/ss.202022.0347
Examples
# create a pk.test object
x_sp <- sample_hypersphere(3, n_points=100)
unif_test <- pk.test(x_sp,rho=0.8)
unif_test