summary.rqt {Qtools} | R Documentation |
Summary for Quantile Regression Tranformation Models
Description
This functions gives a summary list for a quantile regression transformation model.
Usage
## S3 method for class 'rqt'
summary(object, alpha = 0.05, se = "boot", R = 50,
sim = "ordinary", stype = "i", conditional = FALSE, ...)
Arguments
object |
an object of |
alpha |
numeric value to determine the confidence level |
se |
specifies the method used to compute standard errors. For conditional inference ( |
R |
number of bootstrap replications. |
sim |
see argument |
stype |
see argument |
conditional |
logical flag. If |
... |
if |
Details
If inference is carried out conditionally on the transformation parameter (ie, assuming this is known rather than estimated), any type of summary for regression quantiles can be used (see summary.rq
).
For unconditional inference (conditional = FALSE
), there are three methods available: boot
for bootstrap; iid
for large-n approximation of the standard errors under IID assumptions; nid
for large-n approximation of the standard errors under NID assumptions. See Powell (1991), Chamberlain (1994) and Geraci and Jones (2015).
Author(s)
Marco Geraci
References
Canty A and Ripley B (2014). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-11.
Chamberlain G. Quantile regression, censoring, and the structure of wages. In: Sims C, editor. Advances in Econometrics: Sixth World Congress. 1. Cambridge, UK: Cambridge University Press; 1994.
Davison AC and Hinkley DV (1997). Bootstrap Methods and Their Applications. Cambridge University Press, Cambridge.
Geraci M and Jones MC. Improved transformation-based quantile regression. Canadian Journal of Statistics 2015;43(1):118-132.
Mu YM, He XM. Power transformation toward a linear regression quantile. Journal of the American Statistical Association 2007;102(477):269-279.
Powell JL. Estimation of monotonic regression models under quantile restrictions. In: Barnett W, Powell J, Tauchen G, editors. Nonparametric and Semiparametric Methods in Econometrics and Statistics: Proceedings of the Fifth International Symposium on Economic Theory and Econometrics. New York, NY: Cambridge University Press 1991. p. 357-84.