predict.qlss {Qtools} | R Documentation |
Predictions from Conditional LSS Objects
Description
This function computes predictions based on fitted conditional QLSS objects.
Usage
## S3 method for class 'qlss'
predict(object, newdata, interval = FALSE, level = 0.95, R = 200,
na.action = na.pass, trim = 0.05, ...)
Arguments
object |
an object as returned by |
newdata |
an optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used. |
interval |
logical flag. If |
level |
nominal coverage level of the confidence interval. |
R |
number of bootstrap replications used to compute confidence intervals. |
na.action |
function determining what should be done with missing values in |
trim |
proportion of extreme bootstrap replications to be trimmed before standard errors are computed. |
... |
not used. |
Author(s)
Marco Geraci
See Also
Examples
## Not run:
# Fit QLSS object
trees2 <- trees[order(trees$Height),]
fit <- qlss(Volume ~ Height, data = trees2)
## Predict using newdata. Calculate confidence intervals using 200 bootstrap replications
# large confidence intervals for shape index due to small IQR at low values of height
#xx <- seq(min(trees2$Height), max(trees2$Height), length = 100)
#new <- data.frame(Height = xx)
#set.seed(121)
#fit.pred <- predict(fit, newdata = new, interval = TRUE, level = 0.95, R = 200)
#plot(fit.pred, z = xx, interval = TRUE, xlab = "height")
# Restrict range for Height
xx <- seq(65, 87, length = 100)
new <- data.frame(Height = xx)
set.seed(121)
fit.pred <- predict(fit, newdata = new, interval = TRUE, level = 0.95, R = 200)
plot(fit.pred, z = xx, interval = TRUE, xlab = "height") # better
## End(Not run)
[Package Qtools version 1.5.9 Index]