midq2q {Qtools} | R Documentation |
Recover Ordinary Conditional Quantiles from Conditional Mid-Quantiles
Description
This function recovers ordinary conditional quantile functions based on fitted mid-quantile regression models.
Usage
midq2q(object, newdata, observed = FALSE, ...)
Arguments
object |
an object of |
newdata |
a required data frame in which to look for variables with which to predict. |
observed |
logical flag. If |
... |
not used. |
Details
If the values of the support of the random variable are equally spaced integers, then observed
should ideally be set to FALSE
so that the ordinary quantile is obtained by rounding the predicted mid-quantile. Otherwise, the function returns an integer observed in the sample. See Geraci and Farcomeni for more details.
Value
a vector or a matrix of estimated ordinary quantiles. The attribute Fhat
provides the corresponding estimated cumulative distribution.
Author(s)
Marco Geraci
References
Geraci, M. and A. Farcomeni. Mid-quantile regression for discrete responses. arXiv:1907.01945 [stat.ME]. URL: https://arxiv.org/abs/1907.01945.
See Also
Examples
## Not run:
# Esterase data
data(esterase)
# Fit quantiles 0.1, 0.15, ..., 0.85
fit <- midrq(Count ~ Esterase, tau = 2:17/20, data = esterase, type = 3, lambda = 0)
# Recover ordinary quantile function
xx <- seq(min(esterase$Esterase), max(esterase$Esterase), length = 5)
print(Qhat <- midq2q(fit, newdata = data.frame(Esterase = xx)))
# Plot
plot(Qhat, sub = TRUE)
## End(Not run)