mice.impute.rq {Qtools} | R Documentation |
QR-based Multiple Imputation
Description
This function is used to multiply impute missing values using quantile regression imputation models.
Usage
mice.impute.rq(y, ry, x, tsf = "none", symm = TRUE, dbounded = FALSE,
lambda = NULL, x.r = NULL, par = NULL, conditional = TRUE,
epsilon = 0.001, method.rq = "fn", ...)
mice.impute.rrq(y, ry, x, tsf = "none", symm = TRUE, dbounded = FALSE,
lambda = NULL, epsilon = 0.001, method.rq = "fn", ...)
Arguments
y |
numeric vector of length |
ry |
missing data indicator. Logical vector of length |
x |
matrix |
tsf |
transformation to be used. Possible options are |
symm |
logical flag. If |
dbounded |
logical flag. If |
lambda |
if |
x.r |
range of the mapping for doubly bounded variables. |
par |
if |
conditional |
logical flag. If |
epsilon |
constant used to trim the values of the sample space. |
method.rq |
linear programming algorithm (see |
... |
additional arguments. |
Details
This function implements the methods proposed by Geraci (2016) and Geraci and McLain (2018) to impute missing values using quantile regression models. Uniform values are sampled from [epsilon, 1 - epsilon], therefore allowing the interval to be bounded away from 0 and 1 (default is 0.001). It is possible to specify a quantile regression transformation model with parameter lambda
(Geraci and Jones). The function mice.impute.rrq
performs imputation based on restricted regression quantiles to avoid quantile crossing (see Geraci 2016 for details).
Value
A vector of length nmis
with imputations.
Author(s)
Marco Geraci
References
Bottai, M., & Zhen, H. (2013). Multiple imputation based on conditional quantile estimation. Epidemiology, Biostatistics, and Public Health, 10(1), e8758.
Geraci, M. (2016). Estimation of regression quantiles in complex surveys with data missing at random: An application to birthweight determinants. Statistical Methods in Medical Research, 25(4), 1393-1421.
Geraci, M., and Jones, M. C. (2015). Improved transformation-based quantile regression. Canadian Journal of Statistics, 43(1), 118-132.
Geraci, M., and McLain, A. (2018). Multiple imputation for bounded variables. Psychometrika, 83(4), 919-940.
van Buuren, S., and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67.
See Also
Examples
## Not run:
# Load package 'mice'
require(mice)
# Load data nhanes
data(nhanes)
nhanes2 <- nhanes
nhanes2$hyp <- as.factor(nhanes2$hyp)
# Impute continuous variables using quantile regression
set.seed(199)
imp <- mice(nhanes2, meth = c("polyreg", "rq", "logreg", "rq"), m = 5)
# estimate linear regression and pool results
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
pool(fit)
# Impute using restricted quantile regression
set.seed(199)
imp <- mice(nhanes2, meth = c("polyreg", "rrq", "logreg", "rrq"), m = 5)
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
pool(fit)
# Impute using quantile regression + Box-Cox transformation with parameter
# lambda = 0 (ie, log transformation)
set.seed(199)
imp <- mice(nhanes2, meth = c("polyreg", "rq", "logreg", "rq"), m = 5, tsf = "bc", lambda = 0)
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
pool(fit)
## End(Not run)