Qlm.fit {Qest} | R Documentation |
Fitter Functions for Quantile-based Linear Models
Description
This is the basic computing engine called by “Qlm” used to fit quantile-based linear models. This function should only be used directly by experienced users.
Usage
Qlm.fit(y, X, w = rep(1, nobs), start = NULL, wtau = NULL,
control = Qest.control(), ...)
Arguments
y |
vector of observations of length n. |
X |
design matrix of dimension n * p. |
w |
an optional vector of weights to be used in the fitting process. |
start |
starting values for the parameters in the linear predictor. |
wtau |
an optional function that assigns a different weight to each quantile. By default, all quantiles in (0,1) have the same weight. |
control |
a list of operational parameters. This is usually passed through |
... |
additional arguments for |
Value
a “list” with components
coefficients |
p vector |
std.errs |
p vector |
covar |
p x p matrix |
dispersion |
estimated dispersion parameter |
residuals |
n vector |
rank |
integer, giving the rank |
fitted.values |
n vector |
qr |
the QR decomposition, see “qr” |
df.residual |
degrees of freedom of residuals |
obj.function |
the minimized loss function |
gradient |
p vector |
hessian |
p x p matrix |
convergence |
logical. The convergence status |
n.it |
the number of iterations |
control |
control elements |
Author(s)
Gianluca Sottile <gianluca.sottile@unipa.it>, Paolo Frumento <paolo.frumento@unipi.it>
References
Sottile G, and Frumento P (2022). Robust estimation and regression with parametric quantile functions. Computational Statistics and Data Analysis. <doi:10.1016/j.csda.2022.107471>
See Also
Examples
# Ex. 1 Normal model
set.seed(1234)
n <- 100
x1 <- rnorm(n)
x2 <- runif(n,0,3)
y <- rnorm(n, 4 + x1 + 2*x2, 1)
X <- cbind(1, x1, x2)
w <- rep.int(1, n)
m <- Qlm.fit(y = y, X = X, w = w, control = Qest.control(display = TRUE))