| fda.geigen {QZ} | R Documentation |
Generalized Eigen Analysis as in fda Package
Description
This is an equivalent function to fda::geigen which
finds matrices L and M to maximize
tr(L'AM) / sqrt(tr(L'BL) tr(M'CM))
where A = a p x q matrix, B = p x p symmetric, positive definite matrix, B = q x q symmetric positive definite matrix, L = p x s matrix, and M = q x s matrix, where s = the number of non-zero generalized eigenvalues of A.
Usage
fda.geigen(Amat, Bmat, Cmat)
Arguments
Amat |
a numeric matrix |
Bmat |
a symmetric, positive definite matrix with dimension = number of rows of A |
Cmat |
a symmetric, positive definite matrix with dimension = number of columns of A |
Details
This function is equivalent to fda::geigen(Amat, Bmat, Cmat)
except that this is rewritten and utilizes LAPACK functions
via qz.dggev.
Also, Lmat and Mmat are both scaled such that
L'BL and M'CM are identity matrices.
Value
list(values, Lmat, Mmat)
Author(s)
Wei-Chen Chen wccsnow@gmail.com
See Also
Examples
library(QZ, quiet = TRUE)
A <- matrix(as.double(1:6), 2)
B <- matrix(as.double(c(2, 1, 1, 2)), 2)
C <- diag(as.double(1:3))
ret.qz <- fda.geigen(A, B, C)
### Verify
library(fda, quiet = TRUE)
ret.fda <- fda::geigen(A, B, C)