| QUALYPSO.ANOVA {QUALYPSO} | R Documentation |
QUALYPSO.ANOVA
Description
Partition uncertainty in climate responses using an ANOVA inferred with a Bayesian approach.
Usage
QUALYPSO.ANOVA(phiStar, scenAvail, listOption = NULL, namesEff)
Arguments
phiStar |
matrix of climate change responses (absolute or relative changes): |
scenAvail |
data.frame |
listOption |
list of options (see |
namesEff |
names of the main effects |
Value
list with the following fields:
-
GRANDMEAN: List of estimates for the grand mean:
-
strong: MEAN: vector of length
nof posterior means -
strong: SD: vector of length
nof posterior standard dev. -
strong: CI: matrix
nx 2 of credible intervals of probabilityprobCIgiven inlistOption. -
strong: QUANT: matrix
nxnQof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
-
-
RESIDUALVAR: List of estimates for the variance of the residual errors:
-
strong: MEAN: vector of length
nof posterior means -
strong: SD: vector of length
nof posterior standard dev. -
strong: CI: matrix
nx 2 of credible intervals of probabilityprobCIgiven inlistOption. -
strong: QUANT: matrix
nxnQof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
-
-
MAINEFFECT: List of estimates for the main effects. For each main effect (GCM, RCM,..), each element of the list contains a list with:
-
strong: MEAN: matrix
nxnTypeEffof posterior means -
strong: SD: matrix
nxnTypeEffof posterior standard dev. -
strong: CI: array
nx 2 xnTypeEffof credible intervals of probabilityprobCIgiven inlistOption. -
strong: QUANT: array
nxnQxnTypeEffof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
-
-
CHANGEBYEFFECT: For each main effect, list of estimates for the mean change by main effect, i.e. mean change by scenario (RCP4.5). For each main effect (GCM, RCM,..), each element of the list contains a list with:
-
strong: MEAN: matrix
nxnTypeEffof posterior means -
strong: SD: matrix
nxnTypeEffof posterior standard dev. -
strong: CI: array
nx 2 xnTypeEffof credible intervals of probabilityprobCIgiven inlistOption. -
strong: QUANT: array
nxnQxnTypeEffof quantiles related to the probabilitiesquantilePosteriorgiven inlistOption
-
-
EFFECTVAR: variability related to the main effects (i.e. variability between the different RCMs, GCMs,..). Matrix
nxnTypeEff -
CONTRIB_EACH_EFFECT: Contribution of each individual effect to its component (percentage), e.g. what is the contribution of GCM1 to the variability related to GCMs. For each main effect (GCM, RCM,..), each element of the list contains a matrix
nxnTypeEff -
listOption: list of options used to obtained these results (obtained from
QUALYPSO.check.option) -
listScenarioInput: list of scenario characteristics (obtained from
QUALYPSO.process.scenario)
Author(s)
Guillaume Evin
References
Evin, G., B. Hingray, J. Blanchet, N. Eckert, S. Morin, and D. Verfaillie (2020) Partitioning Uncertainty Components of an Incomplete Ensemble of Climate Projections Using Data Augmentation. Journal of Climate. <doi:10.1175/JCLI-D-18-0606.1>.