LocalKM {QTOCen} | R Documentation |
Kernel-based Local Kaplan-Meier Estimator
Description
This is the local KM estimator customized for this library to run
in batch mode.
It returns the estimated conditional survival probabilities given a user specified
set of covariate names that the survival time depends on,
a.k.a F(T > y_0 \mid x_0).
More specifically, for uncensored data points, we return (1 - tauhat_func())
.
If the observed data point is censored, then this function returns value -1
as a flag meaning we cannot .
Usage
LocalKM(D, bw, NamesCov)
Arguments
D |
a data.frame with column |
bw |
the bandwidth parameter |
NamesCov |
the vector of column names in data.frame |
Value
A vector of estimated conditional survival probability evaluated at the observed actual survival time on the same individual
Examples
GenerateData <- function(n)
{
x1 <- runif(n, min=-0.5,max=0.5)
x2 <- runif(n, min=-0.5,max=0.5)
error <- rnorm(n, sd= 1)
ph <- exp(-0.5+1*(x1+x2))/(1+exp(-0.5 + 1*(x1+x2)))
a <- rbinom(n = n, size = 1, prob=ph)
c <- 1.5 + + runif(n = n, min=0, max=2)
cmplt_y <- pmin(2+x1+x2 + a*(1 - x1 - x2) + (0.2 + a*(1+x1+x2)) * error, 4.4)
censor_y <- pmin(cmplt_y, c)
delta <- as.numeric(c > cmplt_y)
return(data.frame(x1=x1,x2=x2,a=a, censor_y = censor_y, delta=delta))
}
n <- 20
D <- GenerateData(n)
mean_hat <- LocalKM(D, 5, c("x1","x2"))
[Package QTOCen version 0.1.1 Index]