WenS {QTL.gCIMapping.GUI} | R Documentation |
The second step of Wen method
Description
An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2
Usage
WenS(flag,CriLOD,NUM,pheRaw,Likelihood,setseed,flagrqtl,yygg,mx,phe,
chr_name,v.map,gen.raw,a.gen.orig,d.gen.orig,n,names.insert2,X.ad.tran.data,X.ad.t4,dir)
Arguments
flag |
random or fix model. |
CriLOD |
LOD score. |
NUM |
the number of trait. |
pheRaw |
raw phenotype matrix . |
Likelihood |
likelihood function. |
setseed |
random seed set in which, the cross validation is needed. |
flagrqtl |
do CIM or not. |
yygg |
covariate matrix. |
mx |
raw genotype matrix. |
phe |
phenotype matrix. |
chr_name |
chromosome name. |
v.map |
linkage map matrix. |
gen.raw |
raw genotype matrix. |
a.gen.orig |
additive genotype matrix. |
d.gen.orig |
dominant genotype matrix. |
n |
number of individual. |
names.insert2 |
linkage map after insert. |
X.ad.tran.data |
genotype matrix after insert. |
X.ad.t4 |
genotype matrix. |
dir |
file storage path. |
Author(s)
Zhang Ya-Wen, Wen Yang-Jun, Wang Shi-Bo, Zhang Yuan-Ming
Maintainer: Yuanming Zhang<soyzhang@mail.hzau.edu.cn>
Examples
## Not run:
data(genf2)
data(phef2)
data(mapf2)
WEN1re<-WenF(pheRaw=phef2,genRaw=genf2,mapRaw1=mapf2,
yygg1=NULL,cov_en=NULL,WalkSpeed=1,CriLOD=2.5,dir=tempdir())
###
ws<-WenS(flag=1,CriLOD=2.5,NUM=1,pheRaw=phef2,
Likelihood="REML",setseed=11001,flagrqtl=FALSE,
yygg=WEN1re$yygg,mx=WEN1re$mx,phe=WEN1re$phe,
chr_name=WEN1re$chr_name,v.map=WEN1re$v.map,
gen.raw=WEN1re$gen.raw,a.gen.orig=WEN1re$a.gen.orig,
d.gen.orig=WEN1re$d.gen.orig,n=WEN1re$n,
names.insert2=WEN1re$names.insert2,
X.ad.tran.data=WEN1re$X.ad.tran.data,
X.ad.t4=WEN1re$X.ad.t4,dir=tempdir())
## End(Not run)
[Package QTL.gCIMapping.GUI version 2.1.1 Index]