rdq {QTE.RD} | R Documentation |
Estimate the QTE under the RDD
Description
rdq
estimates QTE under the RDD with or without covariates. This function is used by rd.qte
to generate QTE estimates.
Usage
rdq(y, x, d, x0, z0 = NULL, tau, h.tau, cov)
Arguments
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
d |
a numeric vector, the treatment status. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. For example, if a female dummy is included, z0 = 1 may indicate the female subgroup. |
tau |
a vector of quantiles of interest. |
h.tau |
the bandwidth values (specified for each quantile level). |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
Value
A list with elements:
- qte
QTE estimates.
- qp.est
conditional quantile estimates on the right side of
x_{0}
(or for the D=1 group).- qm.est
conditional quantile estimates on the left side of
x_{0}
(or for the D=0 group).- bcoe.p
quantile regression coefficients on the right side of
x_{0}
.- bcoe.m
quantile regression coefficients on the left side of
x_{0}
.
Examples
# Without covariate
n = 500
x = runif(n,min=-4,max=4)
d = (x > 0)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n)
tlevel = seq(0.1,0.9,by=0.1)
hh = rep(2,length(tlevel))
rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel,h.tau=hh,cov=0)
# (continued) With covariates
z = sample(c(0,1),n,replace=TRUE)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + d*z + rnorm(n)
rdq(y=y,x=cbind(x,z),d=d,x0=0,z0=c(0,1),tau=tlevel,h.tau=hh,cov=1)