rdq.bias {QTE.RD} | R Documentation |
Bias estimation
Description
rdq.bias
estimates the bias terms using the local quadratic quantile regression.
Usage
rdq.bias(y, x, dz, x0, z0, taus, h.tau, h.tau2, fx, cov)
Arguments
y |
a numeric vector, the outcome variable. |
x |
a vector (or a matrix) of covariates, the first column is the running variable. |
dz |
the number of covariates. |
x0 |
the cutoff point. |
z0 |
the value of the covariates at which to evaluate the effects. |
taus |
a vector of quantiles of interest. |
h.tau |
the bandwidth values (specified for each quantile level), for estimating conditional quantiles. |
h.tau2 |
the bandwidth values for the local quadratic quantile regression, for estimating the bias terms. |
fx |
conditional density estimates. |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
Value
A list with elements:
- bias
the bias estimates.
- b.hat
the estimate of the
B_{v}(x,z,\tau)
term. See Qu, Yoon, and Perron (2024).
References
Zhongjun Qu, Jungmo Yoon, Pierre Perron (2024), "Inference on Conditional Quantile Processes in Partially Linear Models with Applications to the Impact of Unemployment Benefits," The Review of Economics and Statistics; https://doi.org/10.1162/rest_a_01168
Examples
n = 500
x = runif(n,min=-4,max=4)
d = (x > 0)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n)
tlevel = seq(0.1,0.9,by=0.1)
tlevel2 = c(0.05,tlevel,0.95)
hh = rep(2,length(tlevel))
hh2 = rep(2,length(tlevel2))
ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0)
delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05)
hh = rep(2,length(tlevel))
fe = rdq.condf(x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0)
be = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fe$ff[(d==1),],cov=0)