make.band {QTE.RD} | R Documentation |
Uniform confidencedevtools::submit_cran() bands
Description
make.band
constructs uniform confidence bands using the output of rdq.sim
.
The function rdq.band
calls this function to generates uniform bands.
Usage
make.band(n.sam,Dc.p,Dc.m,Dr.p,Dr.m,dz,cov,taus,hh,Qy.p,Qy.m,
bias.p,bias.m,alpha,n.sim)
Arguments
n.sam |
the sample size. |
Dc.p |
simulated values from |
Dc.m |
simulated values from |
Dr.p |
simulated values from |
Dr.m |
simulated values from |
dz |
the number of covariates |
cov |
either 0 or 1. Set cov=1 if covariates are present in the model; otherwise set cov=0. |
taus |
a vector of quantiles of interest. |
hh |
the bandwidth values. |
Qy.p |
estimated conditional quantiles at |
Qy.m |
estimated conditional quantiles at |
bias.p |
estimated bias terms at |
bias.m |
estimated bias terms at |
alpha |
a number between 0 and 1, the desired significance level. |
n.sim |
the number of simulation repetitions. |
Value
A list with elements:
- qte
QTE estimates without bias correction.
- qte.r
QTE estimates with bias correction.
- uband
uniform confidence band for QTE without bias correction.
- uband.r
uniform confidence band for QTE with robust bias correction.
- sig
standard errors for the bias-uncorrected QTE estimates.
- sig.r
standard errors for the bias-corrected QTE estimates. The values reflect the impact of the bias correction on the estimation precision.
See Also
Examples
n = 500
x = runif(n,min=-4,max=4)
d = (x > 0)
y = x + 0.3*(x^2) - 0.1*(x^3) + 1.5*d + rnorm(n)
tlevel = seq(0.1,0.9,by=0.1)
tlevel2 = c(0.05,tlevel,0.95)
hh = rep(2,length(tlevel))
hh2 = rep(2,length(tlevel2))
sel = tlevel2 %in% tlevel
ab = rdq(y=y,x=x,d=d,x0=0,z0=NULL,tau=tlevel2,h.tau=hh2,cov=0)
delta = c(0.05,0.09,0.14,0.17,0.19,0.17,0.14,0.09,0.05)
fp = rdq.condf(x=x,Q=ab$qp.est,bcoe=ab$bcoe.p,taus=tlevel,taul=tlevel2,delta=delta,cov=0)
fm = rdq.condf(x=x,Q=ab$qm.est,bcoe=ab$bcoe.m,taus=tlevel,taul=tlevel2,delta=delta,cov=0)
bp = rdq.bias(y[d==1],x[d==1],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fp$ff[(d==1),],cov=0)
bm = rdq.bias(y[d==0],x[d==0],dz=0,x0=0,z0=NULL,taus=tlevel,hh,hh,fx=fm$ff[(d==0),],cov=0)
sa = rdq.sim(x=x,d=d,x0=0,z0=NULL,dz=0,cov=0,tt=tlevel,hh,hh,fxp=fp$ff,fxm=fm$ff,n.sim=200)
ba = make.band(n,Dc.p=sa$dcp,Dc.m=sa$dcm,Dr.p=sa$drp,Dr.m=sa$drm,dz=0,cov=0,
taus=tlevel,hh,Qy.p=as.matrix(ab$qp.est[sel,]),Qy.m=as.matrix(ab$qm.est[sel,]),
bias.p=bp$bias,bias.m=bm$bias,alpha=0.1,n.sim=200)