Gauss {QRM} | R Documentation |
Multivariate Gauss Distribution
Description
Functions for evaluating multivariate normal density, generating random variates, fitting and testing.
Usage
dmnorm(x, mu, Sigma, log = FALSE)
fit.norm(data)
rmnorm(n, mu = 0, Sigma)
MardiaTest(data)
jointnormalTest(data, dist = c("chisquare", "beta"), plot = TRUE)
Arguments
data |
|
dist |
|
log |
|
n |
|
mu |
|
plot |
|
Sigma |
|
x |
|
Examples
library(QRM)
BiDensPlot(func = dmnorm, mu = c(0, 0), Sigma = equicorr(2, -0.7))
S <- equicorr(d = 3, rho = 0.7)
data <- rmnorm(1000, Sigma = S)
fit.norm(data)
S <- equicorr(d = 10, rho = 0.6)
data <- rmnorm(1000, Sigma = S)
MardiaTest(data)
## Dow Jones Data
data(DJ)
r <- returns(DJ)
stocks <- c("AXP","EK","BA","C","KO","MSFT",
"HWP","INTC","JPM","DIS")
ss <- window(r[, stocks], "1993-01-01", "2000-12-31")
jointnormalTest(ss)
[Package QRM version 0.4-31 Index]