VarianceSwapBS {QFRM} | R Documentation |
Variance Swap valuation via Black-Scholes (BS) model
Description
Variance Swap valuation via Black-Scholes (BS) model
Usage
VarianceSwapBS(o = OptPx(Opt(Style = "VarianceSwap", Right = "Other", ttm =
0.25, S0 = 1020), r = 0.04, q = 0.01), K = seq(800, 1200, 50),
Vol = seq(0.2, 0.24, 0.005), notional = 10^8, varrate = 0.045)
Arguments
o |
An object of class |
K |
A vector of non-negative strike prices |
Vol |
a vector of non-negative, less than zero implied volatilities for the associated strikes |
notional |
A numeric positive amount to be invested |
varrate |
A numeric positive varaince rate to be swapped |
Value
An object of class OptPx
with value included
Author(s)
Max Lee, Department of Statistics, Rice University, Spring 2015
References
Hull, J.C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8, http://www-2.rotman.utoronto.ca/~hull/ofod.
Examples
(o = VarianceSwapBS())$PxBS
o = Opt(Style="VarianceSwap",Right="Other",ttm=.25,S0=1020)
o = OptPx(o,r=.04,q=.01)
Vol = Vol=c(.29,.28,.27,.26,.25,.24,.23,.22,.21)
(o = VarianceSwapBS(o,K=seq(800,1200,50),Vol=Vol,notional=10^8,varrate=.045))$PxBS
o = Opt(Style="VarianceSwap",Right="Other",ttm=.25,S0=1020)
o = OptPx(o,r=.04,q=.01)
Vol=c(.2,.205,.21,.215,.22,.225,.23,.235,.24)
(o =VarianceSwapBS(o,K=seq(800,1200,50),Vol=Vol,notional=10^8,varrate=.045))$PxBS
o = Opt(Style="VarianceSwap",Right="Other",ttm=.1,S0=100)
o = OptPx(o,r=.03,q=.02)
Vol=c(.2,.19,.18,.17,.16,.15,.14,.13,.12)
(o =VarianceSwapBS(o,K=seq(80,120,5),Vol=Vol,notional=10^4,varrate=.03))$PxBS
[Package QFRM version 1.0.1 Index]