| RainbowBS {QFRM} | R Documentation |
Rainbow option valuation via Black-Scholes (BS) model
Description
Rainbow Option via Black-Scholes (BS) model
Usage
RainbowBS(o = OptPx(Opt(Style = "Rainbow")), S1 = 100, S2 = 95, D1 = 0,
D2 = 0, sigma1 = 0.15, sigma2 = 0.2, rho = 0.75, Type = c("Max",
"Min"))
Arguments
o |
An object of class |
S1 |
A spot price of the underlying security 1 (usually S1) |
S2 |
A spot price of the underlying security 2 (usually S2) |
D1 |
A percent yield per annum from the underlying security 1 |
D2 |
A percent yield per annum from the underlying security 2 |
sigma1 |
a vector of implied volatilities for the associated security 1 |
sigma2 |
a vector of implied volatilities for the associated security 2 |
rho |
is the correlation between asset 1 and asset 2 |
Type |
Rainbow option type: 'Max' or 'Min'. |
Details
Two types of Rainbow options are priced: 'Max' and 'Min'.
Value
A list of class RainbowBS consisting of the original OptPx object
and the option pricing parameters S1, Type, isMax, and isMin
as well as the computed price PxBS.
Author(s)
Chengwei Ge,Department of Statistics, Rice University, Spring 2015
References
Zhang Peter G., Exotic Options, 2nd ed, 1998.
Examples
(o = RainbowBS())$PxBS
o = OptPx(Opt(Style = 'Rainbow', Right = "Put"), r = 0.08)
RainbowBS(o, S1=100, S2=95, D1=0,D2=0,sigma1=0.15,sigma2=0.2, rho=0.75,Type='Min')
o = OptPx(Opt(Style = 'Rainbow', K = 102, ttm = 1, Right = "Put"), r = 0.08)
RainbowBS(o, S1=100, S2=95, D1=0,D2=0,sigma1=0.15,sigma2=0.2, rho=0.75,Type='Min')
o=OptPx(Opt(Style = 'Rainbow', K = 102, ttm = 1, Right = "Put"), r = 0.08)
RainbowBS(o, S1=100, S2=95, D1=0,D2=0,sigma1=0.15,sigma2=0.2, rho=0.75,Type='Max')
o=OptPx(Opt(Style = 'Rainbow', K = 102, ttm = 1, Right = "Call"), r = 0.08)
RainbowBS(o, S1=100, S2=95, D1=0,D2=0,sigma1=0.15,sigma2=0.2, rho=0.75,Type='Min')
o=OptPx(Opt(Style = 'Rainbow', K = 102, ttm = 1, Right = "Call"), r = 0.08)
RainbowBS(o, S1=100, S2=95, D1=0,D2=0,sigma1=0.15,sigma2=0.2, rho=0.75,Type='Max')