| LookbackBS {QFRM} | R Documentation |
Lookback option valuation with Black-Scholes (BS) model
Description
Calculates the price of a lookback option using a BSM-adjusted algorithm; Carries the assumption that the asset price is observed continuously.
Usage
LookbackBS(o = OptPx(Opt(Style = "Lookback")), Smax = 50, Smin = 50,
Type = c("Floating", "Fixed"))
Arguments
o |
An object of class |
Smax |
The maximum asset price observed to date. |
Smin |
The minimum asset price observed to date. |
Type |
Specifies the Lookback option as either Floating or Fixed- default argument is Floating. |
Details
To price the lookback option, we require the Smax/Smin, S0, r, q, vol, and ttm arguments from the object classes defined in the package. An example of a complete OptLookback option object can be found in the examples.
Value
An original OptPx object with PxBS field as the price of the option
and user-supplied Smin, Smax, and Type lookback parameters attached.
Author(s)
Richard Huang, Department of Statistics, Rice University, Spring 2015
References
Hull, J.C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8, http://www-2.rotman.utoronto.ca/~hull/ofod/index.html.
Examples
(o = LookbackBS())$PxBS
LookbackBS(OptPx(Opt(Style = 'Lookback'))) #Uses default arguments
# See Hull 9e Example 26.2, p.608; gives price of 7.79
o = Opt(Style = 'Lookback', S0 = 50, ttm= .25, Right = "Put")
o = OptPx(o,r = .1, vol = .4)
o = LookbackBS(o, Type = "Floating")
# See Hull 9e Example 26.2, p.608; gives price of 8.04
o = Opt(Style = 'Lookback', S0 = 50, ttm= .25, Right = "Call")
o = OptPx(o, r = .1, vol = .4)
o = LookbackBS(o, Type = "Floating")
# Price = 17.7129
o = Opt(Style = 'Lookback', S0 = 50, ttm= 1, Right = "Put", K = 60)
o = OptPx(o,r = .05, q = .02, vol = .25)
o = LookbackBS(o, Type = "Fixed")
# Price = 8.237
o = Opt(Style = 'Lookback', S0 = 50, ttm= 1, Right = "Call", K = 55)
o = OptPx(o,r = .1, q = .02, vol = .25)
o = LookbackBS(o, Type = "Fixed")