| HolderExtendibleBS {QFRM} | R Documentation | 
Holder Extendible option valuation via Black-Scholes (BS) model
Description
Computes the price of exotic option (via BS model) which gives the holder the right to extend the option's maturity at an additional premium.
Usage
HolderExtendibleBS(o = OptPx(Opt(Style = "HolderExtendible")), k = 105,
  t1 = 0.5, t2 = 0.75, A = 1)
Arguments
| o | An object of class  | 
| k | The exercise price of the option at t2, a numeric value. | 
| t1 | The time to maturity of the call option, measured in years. | 
| t2 | The time to maturity of the put option, measured in years. | 
| A | The corresponding asset price has exceeded the exercise price X. | 
Value
The original OptPx object
and the option pricing parameters t1, t2,k,A, and computed price PxBS.
Author(s)
Le You, Department of Statistics, Rice University, Spring 2015
References
Hull, J.C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8,
http://www-2.rotman.utoronto.ca/~hull/ofod/index.html
 Haug, Espen G.,Option Pricing Formulas, 2ed.
Examples
(o = HolderExtendibleBS())$PxBS
o = Opt(Style='HolderExtendible',Right='Call', S0=100, ttm=0.5, K=100)
o = OptPx(o,r=0.08,q=0,vol=0.25)
(o = HolderExtendibleBS(o,k=105,t1=0.5,t2=0.75,A=1))$PxBS
o = Opt("HolderExtendible","Put", S0=100, ttm=0.5, K=100)
o = OptPx(o,r=0.08,q=0,vol=0.25)
(o = HolderExtendibleBS(o,k=90,t1=0.5,t2=0.75,A=1))$PxBS