GapMC {QFRM}R Documentation

Gap option valuation via Monte Carlo (MC) simulation

Description

GapMC prices a gap option using the MC method. The call payoff is STKS_T-K when ST>K2S_T>K2, where K2K_2 is the trigger strike. The payoff is increased by K2KK_2-K, which can be positive or negative. The put payoff is KSTK-S_T when ST<K2S_T<K_2. Default values are from policyholder-insurance example 26.1, p.601, from referenced OFOD, 9ed, text.

Usage

GapMC(o = OptPx(Opt(Style = "Gap", Right = "Put", S0 = 5e+05, K = 4e+05, ttm =
  1, ContrSize = 1, SName =
  "Insurance coverage example #26.1, p.601, OFOD, J.C.Hull, 9ed."), r = 0.05, q
  = 0, vol = 0.2), K2 = 350000, NPaths = 5)

Arguments

o

The OptPx object (See OptPx() constructor for more information)

K2

The trigger strike price.

NPaths

The number of paths (trials) to simulate.

Value

An OptPx object. The price is stored under o$PxMC.

Author(s)

Kiryl Novikau, Department of Statistics, Rice University, Spring 2015

References

Hull, John C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8. http://www-2.rotman.utoronto.ca/~hull/ofod/index.html. p.601

Examples

(o = GapMC())$PxMC  #example 26.1, p.601

o = Opt(Style='Gap', Right='Call', S0=50, K=40, ttm=1)
o = OptPx(o, vol=.2, r=.05, q = .02)
(o = GapMC(o, K2 = 45, NPaths = 5))$PxMC

o = Opt(Style='Gap', Right='Call', S0 = 50, K = 60, ttm = 1)
o = OptPx(o, vol=.25,r=.15, q = .02)
(o = GapMC(o, K2 = 55, NPaths = 5))$PxMC

o = Opt(Style='Gap', Right = 'Put', S0 = 50, K = 57, ttm = .5)
o = OptPx(o, vol = .2, r = .09, q = .2)
(o = GapMC(o, K2 = 50, NPaths = 5))$PxMC

o = Opt(Style='Gap', Right='Call', S0=500000, K=400000, ttm=1)
o = OptPx(o, vol=.2,r=.05, q = 0)
(o = GapMC(o, K2 = 350000, NPaths = 5))$PxMC

[Package QFRM version 1.0.1 Index]