GapMC {QFRM} | R Documentation |
Gap option valuation via Monte Carlo (MC) simulation
Description
GapMC prices a gap option using the MC method.
The call payoff is S_T-K
when S_T>K2
, where K_2
is the trigger strike.
The payoff is increased by K_2-K
, which can be positive or negative.
The put payoff is K-S_T
when S_T<K_2
.
Default values are from policyholder-insurance example 26.1, p.601, from referenced OFOD, 9ed, text.
Usage
GapMC(o = OptPx(Opt(Style = "Gap", Right = "Put", S0 = 5e+05, K = 4e+05, ttm =
1, ContrSize = 1, SName =
"Insurance coverage example #26.1, p.601, OFOD, J.C.Hull, 9ed."), r = 0.05, q
= 0, vol = 0.2), K2 = 350000, NPaths = 5)
Arguments
o |
The |
K2 |
The trigger strike price. |
NPaths |
The number of paths (trials) to simulate. |
Value
An OptPx
object. The price is stored under o$PxMC
.
Author(s)
Kiryl Novikau, Department of Statistics, Rice University, Spring 2015
References
Hull, John C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8. http://www-2.rotman.utoronto.ca/~hull/ofod/index.html. p.601
Examples
(o = GapMC())$PxMC #example 26.1, p.601
o = Opt(Style='Gap', Right='Call', S0=50, K=40, ttm=1)
o = OptPx(o, vol=.2, r=.05, q = .02)
(o = GapMC(o, K2 = 45, NPaths = 5))$PxMC
o = Opt(Style='Gap', Right='Call', S0 = 50, K = 60, ttm = 1)
o = OptPx(o, vol=.25,r=.15, q = .02)
(o = GapMC(o, K2 = 55, NPaths = 5))$PxMC
o = Opt(Style='Gap', Right = 'Put', S0 = 50, K = 57, ttm = .5)
o = OptPx(o, vol = .2, r = .09, q = .2)
(o = GapMC(o, K2 = 50, NPaths = 5))$PxMC
o = Opt(Style='Gap', Right='Call', S0=500000, K=400000, ttm=1)
o = OptPx(o, vol=.2,r=.05, q = 0)
(o = GapMC(o, K2 = 350000, NPaths = 5))$PxMC
[Package QFRM version 1.0.1 Index]