| CompoundLT {QFRM} | R Documentation |
Compound option valuation via lattice tree (LT) model
Description
CompoundLT prices a compound option using the binomial tree (BT) method.
The inputs it takes are two OptPx objects.
It pulls the S from the o2 input which should be the option with the greater time to maturity.
Usage
CompoundLT(o1 = OptPx(Opt(Style = "Compound")), o2 = OptPx(Opt(Style =
"Compound")))
Arguments
o1 |
The |
o2 |
The |
Value
User-supplied o1 option with fields o2 and PxLT,
as the second option and calculated price, respectively.
Author(s)
Kiryl Novikau, Department of Statistics, Rice University, Spring 2015
References
Hull, John C., Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8, http://www-2.rotman.utoronto.ca/~hull/ofod/index.html.
Examples
(o = CompoundLT())$PxLT # Uses default arguments
#Put option on a Call:
o = Opt(Style="Compound", S0=50, ttm=.5, Right="P", K = 50)
o1 = OptPx(o, r = .1, vol = .4, NSteps = 5)
o = Opt(Style="Compound", S0=50, ttm=.75, Right="C", K = 60)
o2 = OptPx(o, r = .1, vol = .4, NSteps = 5)
(o = CompoundLT(o1, o2))$PxLT
#Call option on a Call:
o = Opt(Style = "Compound", S0 = 50, ttm= .5, Right = "Call", K = 50)
o1 = OptPx(o, r = .1, vol = .4, NSteps = 5)
o = Opt(Style = "Compound", S0 = 50, ttm= .75, Right = "Call", K = 5)
o2 = OptPx(o, r = .1, vol = .4, NSteps = 5)
(o = CompoundLT(o1, o2))$PxLT
#Put option on a Put:
o = Opt(Style = "Compound", S0 = 50, ttm= .5, Right = "Put", K = 40)
o1 = OptPx(o, r = .1, vol = .4, NSteps = 5)
o = Opt(Style = "Compound", S0 = 50, ttm= .75, Right = "Put", K = 50)
o2 = OptPx(o, r = .1, vol = .4, NSteps = 5)
(o = CompoundLT(o1, o2))$PxMC
#Call option on a Put:
o = Opt(Style = "Compound", S0 = 50, ttm= .5, Right = "Call", K = 30)
o1 = OptPx(o, r = .1, vol = .4, NSteps = 5)
o = Opt(Style = "Compound", S0 = 50, ttm= .75, Right = "Put", K = 80)
o2 = OptPx(o, r = .1, vol = .4, NSteps = 5)
(o = CompoundLT(o1, o2))$PxLT
[Package QFRM version 1.0.1 Index]