ChooserBS {QFRM} | R Documentation |
Chooser option valuation via Black-Scholes (BS) model
Description
Compute an exotic option that allow the holder decide the option
will be a call or put option at some predetermined future date.
In a simple case, both put and call option are plain vanilla option.
The value of the simple chooser option is \max{C(S,K,t_1),P(S,K,t_2)}
.
The plain vanilla option is calculated based on the BS model.
Usage
ChooserBS(o = OptPx(Opt(Style = "Chooser")), t1 = 9/12, t2 = 3/12)
Arguments
o |
An object of class |
t1 |
The time to maturity of the call option, measured in years. |
t2 |
The time to maturity of the put option, measured in years. |
Value
A list of class SimpleChooserBS
consisting of the original OptPx
object
and the option pricing parameters t1
, t2
,
as well as the computed price PxBS
.
Author(s)
Le You, Department of Statistics, Rice University, spring 2015
References
Hull, John C.,Options, Futures and Other Derivatives, 9ed, 2014. Prentice Hall. ISBN 978-0-13-345631-8. http://www-2.rotman.utoronto.ca/~hull/ofod/index.html
Huang Espen G., Option Pricing Formulas, 2ed. http://down.cenet.org.cn/upfile/10/20083212958160.pdf
Wee, Lim Tiong, MFE5010 Exotic Options,Notes for Lecture 4 Chooser option. http://www.stat.nus.edu.sg/~stalimtw/MFE5010/PDF/L4chooser.pdf
Humphreys, Natalia A., ACTS 4302 Principles of Actuarial Models: Financial Economics. Lesson 14: All-or-nothing, Gap, Exchange and Chooser Options.
Examples
(o = ChooserBS())$PxBS
o = Opt(Style='Chooser',Right='Other',S0=50, K=50)
(o = ChooserBS(OptPx(o, r=0.06, q=0.02, vol=0.2),9/12, 3/12))$PxBS
o = Opt(Style='Chooser',Right='Other',S0=50, K=50)
(o = ChooserBS (OptPx(o,r=0.08, q=0, vol=0.25),1/2, 1/4))$PxBS
o = Opt(Style='Chooser',Right='Other',S0=100, K=50)
(o = ChooserBS(OptPx(o,r=0.08, q=0.05, vol=0.3),1/2, 1/4))$PxBS