compute_MellinQF_ratio {QF} | R Documentation |
Mellin Transform of the Independent Positive QFs Ratio
Description
The function computes the Mellin transform of the ratio of independent and positive definite quadratic forms producing a MellinQF_ratio
object.
The output can be used to evaluate the density, cumulative and quantile functions of the target quadratic form.
Usage
compute_MellinQF_ratio(
lambdas_num,
lambdas_den,
etas_num = rep(0, length(lambdas_num)),
etas_den = rep(0, length(lambdas_den)),
eps = 1e-06,
rho = 1 - 1e-04,
maxit_comp = 1e+05,
eps_quant = 1e-06,
maxit_quant = 10000,
lambdas_tol = NULL
)
Arguments
lambdas_num |
vector of positive weights for the numerator. |
lambdas_den |
vector of positive weights for the denominator. |
etas_num |
vector of non-centrality parameters for the numerator. Default all zeros (central chi square). |
etas_den |
vector of non-centrality parameters for the denominator. Default all zeros (central chi square). |
eps |
required absolute error for density and cumulative functions. |
rho |
distribution total probability mass for which it is desired to keep the error |
maxit_comp |
maximum number of iterations. |
eps_quant |
required numerical error for quantile computation. |
maxit_quant |
maximum number of iterations before stopping the quantile computation. |
lambdas_tol |
maximum value admitted for the weight skewness for both the numerator and the denominator. When it is not NULL (default), elements of lambdas such that the ratio max(lambdas)/lambdas is greater than the specified value are removed. |
Details
The Mellin transform of the ratio of two independent quadratic forms having positive weights lambdas_num
and lambdas_den
and non-centrality parameters etas_num
and etas_den
is computed
exploiting the density formulation by Ruben (1962). The numerical error is controlled in order to provide the requested precision (eps
) for the
interval of quantiles that contains the specified total probability rho
.
The argument eps_quant
controls the relative precision requested for the computation of quantiles that determine the range in which the error eps
is
guaranteed, whereas maxit_quant
sets the maximum number of Newton-Raphson iterations of the algorithm.
Value
The function returns an object of the class MellinQF_ratio
that contains information on the Mellin transform
of the ratio of two linear combinations of positively weighted chi-square random variables. This information can be used in order to
evaluate the density, cumulative distribution and quantile functions of the desired quadratic form.
An object of the class MellinQF_ratio
has the following components:
-
range_q
: the range of quantiles that contains the specified mass of probabilityrho
in which it is possible to compute density and CDF preserving the error leveleps
. -
Mellin
: a list containing the values of the Mellin transform (Mellin
), the corresponding evaluation points (z
), the integration stepdelta
and the lowest numerator weight (lambda_min
). the inputs
rho
,lambdas_num
,lambdas_den
,etas_num
,etas_den
,eps
needed for CDF, PDF and quantile function computation.
Source
Ruben, Harold. "Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables." The Annals of Mathematical Statistics 33.2 (1962): 542-570.
See Also
The function print.MellinQF_ratio
can be used to summarize the basic information on the Mellin transform.
The object can be used in the function dQF_ratio
to compute the density function of the QFs ratio,
pQF_ratio
for the CDF and qQF_ratio
for the quantile function.
Examples
library(QF)
# Definition of the QFs
lambdas_QF_num <- c(rep(7, 6),rep(3, 2))
etas_QF_num <- c(rep(6, 6), rep(2, 2))
lambdas_QF_den <- c(0.6, 0.3, 0.1)
# Computation Mellin transform
eps <- 1e-7
rho <- 0.999
Mellin_ratio <- compute_MellinQF_ratio(lambdas_QF_num, lambdas_QF_den,
etas_QF_num, eps = eps, rho = rho)
print(Mellin_ratio)