QF_ratio {QF} | R Documentation |
Ratio of Positive Definite Quadratic Forms Distribution
Description
Density function, distribution function, quantile function and random generator for the ratio of positive definite QFs.
Usage
dQF_ratio(x, obj)
pQF_ratio(q, obj)
qQF_ratio(p, obj, eps_quant = 1e-06, maxit_quant = 10000)
rQF_ratio(
n,
lambdas_num,
lambdas_den,
etas_num = rep(0, length(lambdas_num)),
etas_den = rep(0, length(lambdas_den))
)
Arguments
x , q |
vector of quantiles. |
obj |
|
p |
vector of probabilities. |
eps_quant |
relative error for quantiles. |
maxit_quant |
maximum number of Newton-Raphson iterations allowed to compute quantiles. |
n |
number of observations. |
lambdas_num |
vector of positive weights of the QF at the numerator. |
lambdas_den |
vector of positive weights of the QF at the denominator |
etas_num |
vector of non-centrality parameters of the QF at the numerator. Default all zeros. |
etas_den |
vector of non-centrality parameters of the QF at the denominator Default all zeros. |
Details
The CDF and PDF of the ratio of positive QFs are evaluated by numerical inversion of the Mellin transform.
The absolute error specified in compute_MellinQF_ratio
is guaranteed for values of q
and x
inside range_q
.
If the quantile is outside range_q
, computations are carried out, but a warning is sent.
The function uses the Newton-Raphson algorithm to compute the ratio of QFs quantiles related to probabilities p
.
Value
dQF_ratio
provides the values of the density function at a quantile x
.
pQF_ratio
provides the cumulative distribution function at a quantile q
.
qQF_ratio
provides the quantile corresponding to a probability level p
.
rQF_ratio
provides a sample of n
independent realizations the QFs ratio.
See Also
See compute_MellinQF_ratio
for details on the Mellin computation.
Examples
lambdas_QF_num <- c(rep(7, 6),rep(3, 2))
etas_QF_num <- c(rep(6, 6), rep(2, 2))
lambdas_QF_den <- c(0.6, 0.3, 0.1)
# Computation Mellin transform
eps <- 1e-7
rho <- 0.999
Mellin_ratio <- compute_MellinQF_ratio(lambdas_QF_num, lambdas_QF_den,
etas_QF_num, eps = eps, rho = rho)
xs <- seq(Mellin_ratio$range_q[1], Mellin_ratio$range_q[2], l = 100)
# PDF
ds <- dQF_ratio(xs, Mellin_ratio)
plot(xs, ds, type="l")
# CDF
ps <- pQF_ratio(xs, Mellin_ratio)
plot(xs, ps, type="l")
# Quantile
qs <- qQF_ratio(ps, Mellin_ratio)
plot(ps, qs, type="l")
#Comparison computed quantiles vs real quantiles
plot((qs - xs) / xs, type = "l")