QCSIS {QCSIS} | R Documentation |
Quantile Correlation-Sure Independence Screening (QC-SIS)
Description
The function implemrnts the quantile correlation-sure independence screening (QC-SIS).
Usage
QCSIS(x, y, tau, d)
Arguments
x |
The design matrix, of dimensions n * p, without an intercept. |
y |
The response vector of dimension n * 1. |
tau |
The quantile(s) to be estimated. By default, tau=1:(n-1)/n. |
d |
The tuning parameter used to covarites had significant effect on the response variable, such as [n/log(n)],or n-1 |
Value
w |
The estimate of w. |
M |
The subscript of x recuited by QC-SIS. |
Author(s)
Xuejun Ma, Jingxiao Zhang, Jingke Zhou
References
Xuejun Ma and Jingxiao Zhang. Robust model-free feature screening via quantile correlation. Journal of Multivariate Analysis. Online, 2015.
Examples
n <- 20
p <- 200
r <- 0.05
x <- matrix(rnorm(n * p), n, p)
e <- rnorm(n, 0, 1)
inde <- sample(n, r * n)
x[inde, 1] <- 2 * sqrt(rchisq(r * n, df = p))
y <- 5 * x[, 1] + 5 * x[, 2] + 5 * x[, 3] + e
d <- 19
fit.QCSIS <- QCSIS(x = x, y = y, d = d)
fit.QCSIS$M
[Package QCSIS version 0.1 Index]