neglogLik {PtProcess} | R Documentation |
Negative Log-Likelihood
Description
Calculates the log-likelihood multiplied by negative one. It is in a format that can be used with the functions nlm
and optim
.
Usage
neglogLik(params, object, pmap = NULL, SNOWcluster=NULL)
Arguments
params |
a vector of revised parameter values. |
object |
an object of class |
pmap |
a user provided function mapping the revised parameter values |
SNOWcluster |
an object of class |
Details
This function can be used with the two functions nlm
and optim
(see “Examples” below) to maximise the likelihood function of a model specified in object
. Both nlm
and optim
are minimisers, hence the “negative” log-likelihood. The topic distribution
gives examples of their use in the relatively easy situation of fitting standard probability distributions to data assuming independence.
The maximisation of the model likelihood function can be restricted to be over a subset of the model parameters. Other parameters will then be fixed at the values stored in the model object
. Let \Theta_0
denote the full model parameter space, and let \Theta
denote the parameter sub-space (\Theta \subseteq \Theta_0
) over which the likelihood function is to be maximised. The argument params
contains values in \Theta
, and pmap
is assigned a function that maps these values into the full model parameter space \Theta_0
. See “Examples” below.
The mapping function assigned to pmap
can also be made to impose restrictions on the domain of the parameter space \Theta
so that the minimiser cannot jump to values such that \Theta \not\subseteq \Theta_0
. For example, if a particular parameter must be positive, one can work with a transformed parameter that can take any value on the real line, with the model parameter being the exponential of this transformed parameter. Similarly a modified logit like transform can be used to ensure that parameter values remain within a fixed interval with finite boundaries. Examples of these situations can be found in the topic distribution
and the “Examples” below.
Value
Value of the log-likelihood times negative one.
See Also
Examples
# SRM: magnitude is iid exponential with bvalue=1
# maximise exponential mark density too
TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))
x <- mpp(data=NULL,
gif=srm_gif,
marks=list(dexp_mark, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)
x <- simulate(x, seed=5)
allmap <- function(y, p){
# map all parameters into model object
# transform exponential param so it is positive
y$params[1:3] <- p[1:3]
y$params[4] <- exp(p[4])
return(y)
}
params <- c(-2.5, 0.01, 0.8, log(bvalue*log(10)))
z <- nlm(neglogLik, params, object=x, pmap=allmap,
print.level=2, iterlim=500, typsize=abs(params))
print(z$estimate)
# these should be the same:
print(exp(z$estimate[4]))
print(1/mean(x$data$magnitude))