vectorised_multi {ProteoBayes} | R Documentation |
Vectorised version of multi_posterior_mean()
Description
Alternative vectorised version, highly efficient when nb_peptide < 30.
Usage
vectorised_multi(data, mu_0 = NULL, lambda_0 = 1, Sigma_0 = NULL, nu_0 = 10)
Arguments
data |
A tibble or data frame containing imputed data sets for all
groups. Required columns: |
mu_0 |
A vector, corresponding to the prior mean. If NULL, all groups are initialised with the same empirical mean for each peptide. |
lambda_0 |
A number, corresponding to the prior covariance scaling parameter. |
Sigma_0 |
A matrix, corresponding to the prior covariance parameter. If NULL, the identity matrix will be used by default. |
nu_0 |
A number, corresponding to the prior degrees of freedom. |
Value
A tibble providing the parameters of the posterior t-distribution for the mean of the considered groups for each peptide.
Examples
TRUE