SILS {PrometheeTools}R Documentation

Quality Index of Silhouette for Sorting

Description

This function computes the quality index for SILS (Silhouette for Sorting), which relies on PROMETHEE II net flows to assess the classifications generated by PROMETHEE-based ordered sorting methods.

Usage

SILS(matrix_evaluation, data_criteria, k, SILS_plot = FALSE)

Arguments

matrix_evaluation

The matrix includes the values for all alternatives and limiting profiles are rows and columns correspond to the evaluation criteria. The last column indicates the alternative classification.

data_criteria

Matrix with the parameter information (rows) for each criterion (columns). The rows of parameters are in the following order: Function Type, Indifference Threshold, Preference Threshold, Objective and Weight.

k

The number of categories to be evaluated.

SILS_plot

Boolean value indicating whether to generate a stacked bar chart representing the SILS values.

Details

Value

References

Barrera, F., Segura, M., & Maroto, C. (2023) Online. Multicriteria sorting method based on global and local search for supplier segmentation. International Transactions in Operational Research. DOI:10.1111/itor.13288

See Also

PROMETHEEII

Examples

k <- 4
matrix_evaluation <- data.frame (

Alternative = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
                 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
                 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
                "r1", "r2", "r3", "r4", "r5"),
Monetary = c(21.52, 68.09, 184.94, 237.62, 14.29, 12.78, 91.53, 11.39, 264.79, 12.74,
            274.41, 3.75, 47.92, 34.5, 45.89, 39.92, 31.18, 273.23, 16.39, 3.91,
            20.09, 6.52, 26.62, 28.47, 7.57, 69.2, 420.95, 12.01, 85.88, 8.78,
            6816.80, 120, 40, 20, 0),
Recency = c(0, 0, 0, 0, 3, 5, 0, 6, 0, 3,
           1, 0, 1, 0, 0, 0, 0, 0, 2, 1,
           0, 0, 0, 0, 5, 1, 0, 0, 1, 4,
           0, 1, 7, 8, 12),
Frequency = c(7, 5, 12, 12, 1, 3, 9, 2, 12, 4,
             11, 3, 10, 10, 11, 11, 12, 12, 7, 1,
             5, 2, 9, 11, 4, 10, 12, 3, 10, 2,
             12, 10, 8, 4, 1),
Financial_score = c(66, 58, 83, 68, 68, 69, 77, 55, 77, 53,
                   78, 35, 84, 75, 71, 64, 56, 55, 52, 30,
                   66, 50, 65, 53, 54, 82, 68, 53, 62, 43,
                   100, 80, 75, 65, 0),
Length = c(4, 3, 3, 2, 2, 2, 2, 3, 2, 4,
          3, 3, 1, 1, 2, 5, 4, 2, 2, 5,
          4, 5, 1, 4, 2, 1, 5, 1, 1, 2,
          5, 4, 3, 2, 1),
Category = c(3, 3, 1, 1, 4, 3, 2, 4, 1, 3,
              1, 4, 2, 2, 2, 2, 2, 1, 3, 4,
              3, 3, 3, 2, 4, 2, 1, 4, 3, 4,
              NA, NA, NA, NA, NA))
data_criteria <- data.frame(
 Parameter = c("Function Type", "Indifference Threshold",
               "Preference Threshold","Objetive", "Weight"),
 Frequency = c("linear", 0, 3, "max", 0.2),
 Monetary = c("linear", 30.00, 120, "max", 0.4),
 Recency = c("usual", 0.00, 0.00, "min", 0.1),
 Financial_score = c("linear", 0.00, 10, "max", 0.2),
 Length = c("usual", 0.00, 0.00, "max", 0.1))
RS <- SILS(matrix_evaluation, data_criteria, k, SILS_plot = TRUE)
print(RS)

[Package PrometheeTools version 0.1.0 Index]