ProjectionPursuit {ProjectionBasedClustering} | R Documentation |
Projection Pursuit
Description
In the absence of a generative model for the data the algorithm can be used to find the projection pursuit directions. Projection pursuit is a technique for finding 'interesting' directions in multidimensional datasets
Usage
ProjectionPursuit(Data,OutputDimension=2,Indexfunction="logcosh",
Alpha=1,Iterations=200,PlotIt=FALSE,Cls)
Arguments
Data |
array of data: n cases in rows, d variables in columns, matrix is not symmetric or distance matrix, in this case matrix has to be symmetric |
OutputDimension |
Number of dimensions in the Outputspace, default=2 |
Indexfunction |
Criterium for Minimization: default: 'logcosh' G(u)=1/a*log cosh(a*u) (ICA) 'exp': G(u)=-exp(u^2/2) 'kernel' 1/(1* pi )*exp(r/2) |
Alpha |
constant with 1<=alpha<=2 used in approximation to neg-entropy when fun == "logcosh" |
Iterations |
maximum number of iterations to perform. |
PlotIt |
Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown |
Cls |
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data. |
Details
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).
Value
ProjectedPoints |
[1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projectio |
Note
You can use the standard ShepardScatterPlot
or the better approach through the ShepardDensityPlot
of the CRAN package DataVisualizations
.
Author(s)
Michael Thrun