CCA {ProjectionBasedClustering} | R Documentation |
Curvilinear Component Analysis (CCA)
Description
CCA Projects data vectors using Curvilinear Component Analysis [Demartines/Herault, 1995],[Demartines/Herault, 1997].
Unknown values (NaN's) in the data: projections of vectors with unknown components tend to drift towards the center of the projection distribution. Projections of totally unknown vectors are set to unknown (NaN).
Usage
CCA(DataOrDistances,Epochs,OutputDimension=2,method='euclidean',
alpha0 = 0.5, lambda0,PlotIt=FALSE,Cls)
Arguments
DataOrDistances |
Numerical matrix defined as either
or
|
Epochs |
Number of eppochs (scalar), i.e, training length |
OutputDimension |
Number of dimensions in the Outputspace, default=2 |
method |
method specified by distance string. One of: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary' |
alpha0 |
(scalar) initial step size, 0.5 by default |
lambda0 |
(scalar) initial radius of influence, 3*max(std(D)) by default |
PlotIt |
Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown |
Cls |
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data. |
Details
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).
Value
A n by OutputDimension matrix containing coordinates of the projected points.
Note
Only Transfered from matlab to R. Matlabversion: Contributed to SOM Toolbox 2.0, February 2nd, 2000 by Juha Vesanto.
You can use the standard Sheparddiagram
or the better approach through the ShepardDensityScatter
of the CRAN package DataVisualizations
.
Author(s)
Florian Lerch
References
[Demartines/Herault, 1997] Demartines, P., & Herault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, Vol. 8(1), pp. 148-154. 1997.
[Demartines/Herault, 1995] Demartines, P., & Herault, J.: CCA:" Curvilinear component analysis", Proc. 15 Colloque sur le traitement du signal et des images, Vol. 199, GRETSI, Groupe d'Etudes du Traitement du Signal et des Images, France 18-21 September, 1995.
Examples
data('Hepta')
Data=Hepta$Data
Proj=CCA(Data,Epochs=20)
## Not run:
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
## End(Not run)