| CCA {ProjectionBasedClustering} | R Documentation |
Curvilinear Component Analysis (CCA)
Description
CCA Projects data vectors using Curvilinear Component Analysis [Demartines/Herault, 1995],[Demartines/Herault, 1997].
Unknown values (NaN's) in the data: projections of vectors with unknown components tend to drift towards the center of the projection distribution. Projections of totally unknown vectors are set to unknown (NaN).
Usage
CCA(DataOrDistances,Epochs,OutputDimension=2,method='euclidean',
alpha0 = 0.5, lambda0,PlotIt=FALSE,Cls)
Arguments
DataOrDistances |
Numerical matrix defined as either
or
|
Epochs |
Number of eppochs (scalar), i.e, training length |
OutputDimension |
Number of dimensions in the Outputspace, default=2 |
method |
method specified by distance string. One of: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary' |
alpha0 |
(scalar) initial step size, 0.5 by default |
lambda0 |
(scalar) initial radius of influence, 3*max(std(D)) by default |
PlotIt |
Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown |
Cls |
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data. |
Details
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi:10.1007/978-3-658-20540-9).
Value
A n by OutputDimension matrix containing coordinates of the projected points.
Note
Only Transfered from matlab to R. Matlabversion: Contributed to SOM Toolbox 2.0, February 2nd, 2000 by Juha Vesanto.
You can use the standard Sheparddiagram or the better approach through the ShepardDensityScatter of the CRAN package DataVisualizations.
Author(s)
Florian Lerch
References
[Demartines/Herault, 1997] Demartines, P., & Herault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, Vol. 8(1), pp. 148-154. 1997.
[Demartines/Herault, 1995] Demartines, P., & Herault, J.: CCA:" Curvilinear component analysis", Proc. 15 Colloque sur le traitement du signal et des images, Vol. 199, GRETSI, Groupe d'Etudes du Traitement du Signal et des Images, France 18-21 September, 1995.
Examples
data('Hepta')
Data=Hepta$Data
Proj=CCA(Data,Epochs=20)
## Not run:
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
## End(Not run)