| seq2feature_mds_stochastic {ProcData} | R Documentation | 
Feature extraction by stochastic mds
Description
Feature extraction by stochastic mds
Usage
seq2feature_mds_stochastic(seqs = NULL, K = 2,
  dist_type = "oss_action", max_epoch = 100, step_size = 0.01,
  pca = TRUE, tot = 1e-06, return_dist = FALSE, L_set = 1:3)
Arguments
| seqs | a  | 
| K | the number of features to be extracted. | 
| dist_type | a character string specifies the dissimilarity measure for two response processes. See 'Details'. | 
| max_epoch | the maximum number of epochs for stochastic gradient descent. | 
| step_size | the step size of stochastic gradient descent. | 
| pca | a logical scalar. If  | 
| tot | the accuracy tolerance for determining convergence. | 
| return_dist | logical. If  | 
| L_set | length of ngrams considered. | 
Value
seq2feature_mds_stochastic returns a list containing 
| theta | a numeric matrix giving the  | 
| loss | the value of the multidimensional scaling objective function. | 
| dist_mat | the dissimilary matrix. This element exists only if  |