seq2feature_mds_stochastic {ProcData} | R Documentation |
Feature extraction by stochastic mds
Description
Feature extraction by stochastic mds
Usage
seq2feature_mds_stochastic(seqs = NULL, K = 2,
dist_type = "oss_action", max_epoch = 100, step_size = 0.01,
pca = TRUE, tot = 1e-06, return_dist = FALSE, L_set = 1:3)
Arguments
seqs |
a |
K |
the number of features to be extracted. |
dist_type |
a character string specifies the dissimilarity measure for two response processes. See 'Details'. |
max_epoch |
the maximum number of epochs for stochastic gradient descent. |
step_size |
the step size of stochastic gradient descent. |
pca |
a logical scalar. If |
tot |
the accuracy tolerance for determining convergence. |
return_dist |
logical. If |
L_set |
length of ngrams considered. |
Value
seq2feature_mds_stochastic
returns a list containing
theta |
a numeric matrix giving the |
loss |
the value of the multidimensional scaling objective function. |
dist_mat |
the dissimilary matrix. This element exists only if |