G1 {ProDenICA} | R Documentation |
FastICA contrast functions.
Description
contrast functions for computing the negentropy criteria used in FastICA; see references.
Usage
G1(s, a=1)
G0(s, a=1)
Arguments
s |
estimated independent component |
a |
additional tuning parameter (only used in |
Value
a list with components
Gs |
contrast function evaluated at values of x. |
gs |
estimated first derivative of |
gps |
estimated second derivative of |
Author(s)
Trevor Hastie and Rob Tibshirani
References
Hyvarinen, A., Karhunen, J. and Oja, E. (2001). Independent Component
Analysis, Wiley, New York
Hastie, T. and Tibshirani, R. (2003) Independent Component Analysis
through Product Density Estimation in Advances in Neural Information
Processing Systems 15 (Becker, S. and Obermayer, K., eds), MIT Press,
Cambridge, MA. pp 649-656
Hastie, T., Tibshirani, R. and Friedman, J. (2009) Elements of
Statistical Learning (2nd edition), Springer.
https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12_toc.pdf
See Also
GPois
and ProDenICA
Examples
p=2
### Can use letters a-r below for dist
dist="n"
N=1024
A0<-mixmat(p)
s<-scale(cbind(rjordan(dist,N),rjordan(dist,N)))
x <- s %*% A0
fit=ProDenICA(x,Gfunc=G1, whiten=TRUE)