control.mcmc.Bayes.SPDE {PrevMap} | R Documentation |
Control settings for the MCMC algorithm used for Bayesian inference using SPDE
Description
This function defines the different tuning parameter that are used in the MCMC algorithm for Bayesian inference using a SPDE approximation for the spatial Gaussian process.
Usage
control.mcmc.Bayes.SPDE(
n.sim,
burnin,
thin,
h.theta1 = 0.01,
h.theta2 = 0.01,
start.beta = "prior mean",
start.sigma2 = "prior mean",
start.phi = "prior mean",
start.S = "prior mean",
n.iter = 1,
h = 1,
c1.h.theta1 = 0.01,
c2.h.theta1 = 1e-04,
c1.h.theta2 = 0.01,
c2.h.theta2 = 1e-04
)
Arguments
n.sim |
total number of simulations. |
burnin |
initial number of samples to be discarded. |
thin |
value used to retain only evey |
h.theta1 |
starting value of the tuning parameter of the proposal distribution for |
h.theta2 |
starting value of the tuning parameter of the proposal distribution for |
start.beta |
starting value for the regression coefficients |
start.sigma2 |
starting value for |
start.phi |
starting value for |
start.S |
starting value for the spatial random effect. If not provided the prior mean is used. |
n.iter |
number of iteration of the Newton-Raphson procedure used to compute the mean and coviariance matrix of the Gaussian proposal in the MCMC; defaut is |
h |
tuning parameter for the covariance matrix of the Gaussian proposal. Default is |
c1.h.theta1 |
value of |
c2.h.theta1 |
value of |
c1.h.theta2 |
value of |
c2.h.theta2 |
value of |
Value
an object of class "mcmc.Bayes.PrevMap".
Author(s)
Emanuele Giorgi e.giorgi@lancaster.ac.uk
Peter J. Diggle p.diggle@lancaster.ac.uk