ORmultivariate {PredictABEL} | R Documentation |
Function to obtain multivariate odds ratios from a logistic regression model.
Description
The function estimates multivariate (adjusted) odds ratios (ORs) with 95% confidence intervals (CIs) for all the genetic and non-genetic variables in the risk model.
Usage
ORmultivariate(riskModel, filename)
Arguments
riskModel |
Name of logistic regression model that can be fitted using
the function |
filename |
Name of the output file in which the multivariate
ORs will be saved. If no directory is specified, the file is
saved in the working directory as a txt file.
When |
Details
The function requires that first a logistic regression
model is fitted either by using GLM
function or the function
fitLogRegModel
. In addition to the multivariate ORs,
the function returns summary statistics of model performance, namely the Brier
score and the Nagelkerke's R^2
value.
The Brier score quantifies the accuracy of risk predictions by comparing
predicted risks with observed outcomes at individual level (where outcome
values are either 0 or 1). The Nagelkerke's R^2
value indicates the percentage of variation
of the outcome explained by the predictors in the model.
Value
The function returns:
Predictors Summary |
OR with 95% CI and corresponding p-values for each predictor in the model |
Brier Score |
Brier score |
Nagelkerke Index |
Nagelkerke's |
References
Brier GW. Verification of forecasts expressed in terms of probability. Monthly weather review 1950;78:1-3.
Nagelkerke NJ. A note on a general definition of the coefficient of determination. Biometrika 1991;78:691-692.
See Also
Examples
# specify dataset with outcome and predictor variables
data(ExampleData)
# specify column number of outcome variable
cOutcome <- 2
# specify column numbers of non-genetic predictors
cNonGenPred <- c(3:10)
# specify column numbers of non-genetic predictors that are categorical
cNonGenPredCat <- c(6:8)
# specify column numbers of genetic predictors
cGenPred <- c(11,13:16)
# specify column numbers of genetic predictors that are categorical
cGenPredCat <- c(0)
# fit logistic regression model
riskmodel <- fitLogRegModel(data=ExampleData, cOutcome=cOutcome,
cNonGenPreds=cNonGenPred, cNonGenPredsCat=cNonGenPredCat,
cGenPreds=cGenPred, cGenPredsCat=cGenPredCat)
# obtain multivariate OR(95% CI) for all predictors of the fitted model
ORmultivariate(riskModel=riskmodel)