dBilomaxPR {PosRatioDist} | R Documentation |
BilomaxPR
Description
probability density function of quotient of Bivariate Lomax random variables conditioned to the positive quadrant.For more detailed information please read the first reference paper.
Usage
dBilomaxPR(x, a, b, c, alpha, beta, theta)
Arguments
x |
single positive scalar for quotient |
a |
parameter for Bivariate lomax distribution |
b |
parameter for Bivariate lomax distribution |
c |
parameter for Bivariate lomax distribution |
alpha |
parameter for Bivariate lomax distribution |
beta |
parameter for Bivariate lomax distribution |
theta |
parameter for Bivariate lomax distribution |
Details
Probability density function
f_R (r \mid X > 0, Y > 0) = \frac {c^2 \theta^2 r}{\Pr (X > 0, Y > 0)} J_3 \left( \theta r, \beta - \theta a + \left( \alpha - \theta b \right) r, 1 - \alpha a - \beta b + \theta a b, c + 2 \right) +\frac {c^2 \theta \left[ (\alpha - \theta b) r + \beta - \theta a \right]} {\Pr (X > 0, Y > 0)} J_2 \left( \theta r, \beta - \theta a + \left( \alpha - \theta b \right) r, 1 - \alpha a - \beta b + \theta a b, c + 2 \right) +\frac {c \left[ c (\alpha - \theta b) (\beta - \theta a) + \alpha \beta - \theta \right]}{\Pr (X > 0, Y > 0)}J_1 \left( \theta r, \beta - \theta a + \left( \alpha - \theta b \right) r,1 - \alpha a - \beta b + \theta a b, c + 2 \right)
For r > 0
,\alpha > 0
, \beta > 0
, \theta > 0
, 0 \leq \theta \leq (c + 1) \alpha \beta
where J_1,J_2,J_3
are given by first reference paper section (2.5)
Value
dBilomaxPR
gives the probability density function for bivariate lomax random variables conditioned to the positive quadrant.
Invalid arguments will return an error message.
Author(s)
Saralees Nadarajah & Yuancheng Si siyuanchengman@gmail.com
References
Yuancheng Si and Saralees Nadarajah and Xiaodong Song, (2020). On the distribution of quotient of random variables conditioned to the positive quadrant. Communications in Statistics - Theory and Methods, 49, pp2514-2528.
Balakrishnan, N. and Lai, C. -D. (2009).Continuous Bivariate Distributions.Springer Verlag, New York.