pop.predict2 {PopVar} | R Documentation |
Predict genetic variance and genetic correlations in bi-parental populations using a deterministic model
Description
Generates predictions of the genetic variance and genetic correlation in bi-parental populations using a set of deterministic equations instead of simulations.
Usage
pop.predict2(
G.in,
y.in,
map.in,
crossing.table,
parents,
tail.p = 0.1,
self.gen = Inf,
DH = FALSE,
models = c("rrBLUP", "BayesA", "BayesB", "BayesC", "BL", "BRR"),
...
)
pop_predict2(
M,
y.in,
marker.effects,
map.in,
crossing.table,
parents,
tail.p = 0.1,
self.gen = Inf,
DH = FALSE,
models = c("rrBLUP", "BayesA", "BayesB", "BayesC", "BL", "BRR"),
...
)
Arguments
G.in |
See |
y.in |
See |
map.in |
See |
crossing.table |
See |
parents |
See |
tail.p |
See |
self.gen |
The number of selfing generations in the potential cross. Can be an integer or |
DH |
Indicator if doubled-haploids are to be induced after the number of selfing generations indicated by
|
models |
See |
... |
Additional arguments to pass depending on the choice of |
M |
A Matrix of marker genotypes of dimensions |
marker.effects |
A data frame of marker effects. The first column should include the marker name and
subsequent columns should include the marker effects. Supercedes |
Details
Predictions are based on the deterministic equations specified by Zhong and Jannink (2007), Allier et al. (2019), and Neyhart et al. (2019).
If you select a model
other than "rrBLUP", you must specify the following additional arguments:
nIter
: Seepop.predict
.burnIn
: Seepop.predict
.
Value
A data.frame
containing predictions of \mu
, V_G
, and \mu_{sp}
for
each trait for each potential bi-parental cross. When multiple traits are provided, the correlated
responses and correlation between all pairs of traits is also returned.
Functions
-
pop_predict2()
:
References
Zhong, S., and J.-L. Jannink, 2007 Using quantitative trait loci results to discriminate among crosses on the basis of their progeny mean and variance. Genetics 177: 567–576. https://doi.org/10.1534/ genetics.107.075358
Allier, A., L. Moreau, A. Charcosset, S. Teyssèdre, and C. Lehermeier, 2019 Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression. G3 9: 1469–1479. doi: 10.1534/g3.119.400129
Neyhart, J.L., A.J. Lorenz, and K.P. Smith, 2019 Multi-trait Improvement by Predicting Genetic Correlations in Breeding Crosses. G3 9: 3153-3165. doi: 10.1534/g3.119.400406
Examples
# Load data
data("think_barley")
# Use example data to make predictions
out <- pop.predict2(G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex)
# Provide a vector of parents to predict all possible crosses (some parents
# have missing phenotypic data)
out <- pop.predict2(G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex,
parents = y.in_ex$Entry[1:5])
# Make predictions for 5 crosses with various levels of inbreeding
out_list <- lapply(X = 1:10, FUN = function(self.gen) {
out <- pop.predict2(G.in = G.in_ex_imputed, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex[1:5,], self.gen = self.gen)
out$self.gen <- self.gen
out })
# Plot predictions of grain yield genetic variance over levels of inbreeding
dat <- do.call("rbind", lapply(out_list, subset, trait == "Yield"))
plot(pred_varG ~ self.gen, data = dat, type = "b",
subset = parent1 == parent1[1] & parent2 == parent2[1])
# Load data
data("think_barley")
# Use example data to make predictions
out <- pop_predict2(M = G.in_ex_mat, y.in = y.in_ex, map.in = map.in_ex,
crossing.table = cross.tab_ex)
# Provide a vector of parents to predict all possible crosses (some parents
# have missing phenotypic data)
out <- pop_predict2(M = G.in_ex_mat, y.in = y.in_ex, map.in = map.in_ex,
parents = y.in_ex$Entry[1:10])