betaDiv {PoolBal} | R Documentation |
Compute the Kullback-Leibler divergence between the beta and uniform distributions
Description
Computes the Kullback-Leibler divergence for the special case of the uniform density against the beta density.
Usage
betaDiv(a, w = (1 - a)/(b - a), b = 1/w + a * (1 - 1/w))
Arguments
a |
first shape parameter between 0 and infinity |
w |
UMP parameter between 0 and 1 |
b |
second shape parameter between 0 and infinity |
Details
This function accepts either the a/b parameterization (equivalent to shape1/shape2 in R), or the a/w parameterization which links the divergence to the UMP test.
Value
A real value.
Author(s)
Chris Salahub
Examples
betaDiv(a = 0.5, w = 0.5)
betaDiv(a = 0.1, b = 1)
[Package PoolBal version 0.1-0 Index]