PoissonBinomial-package {PoissonBinomial} | R Documentation |
Efficient Exact and Approximate Implementations for Computing Ordinary and Generalized Poisson Binomial Distributions
Description
This package implements various algorithms for computing the probability mass function, the cumulative distribution function, quantiles and random numbers of both ordinary and generalized Poisson binomial distributions.
References
Hong, Y. (2013). On computing the distribution function for the Poisson binomial distribution. Computational Statistics & Data Analysis, 59, pp. 41-51. doi:10.1016/j.csda.2012.10.006
Biscarri, W., Zhao, S. D. and Brunner, R. J. (2018) A simple and fast method for computing the Poisson binomial distribution. Computational Statistics and Data Analysis, 31, pp. 216–222. doi:10.1016/j.csda.2018.01.007
Zhang, M., Hong, Y. and Balakrishnan, N. (2018). The generalized Poisson-binomial distribution and the computation of its distribution function. Journal of Statistical Computational and Simulation, 88(8), pp. 1515-1527. doi:10.1080/00949655.2018.1440294
Examples
# Functions for ordinary Poisson binomial distributions
set.seed(1)
pp <- c(1, 0, runif(10), 1, 0, 1)
qq <- seq(0, 1, 0.01)
dpbinom(NULL, pp)
ppbinom(7:10, pp, method = "DivideFFT")
qpbinom(qq, pp, method = "Convolve")
rpbinom(10, pp, method = "RefinedNormal")
# Functions for generalized Poisson binomial distributions
va <- rep(5, length(pp))
vb <- 1:length(pp)
dgpbinom(NULL, pp, va, vb, method = "Convolve")
pgpbinom(80:100, pp, va, vb, method = "Convolve")
qgpbinom(qq, pp, va, vb, method = "Convolve")
rgpbinom(100, pp, va, vb, method = "Convolve")