overall.corr.mat {PoisBinNonNor} | R Documentation |
Computes the final intermediate correlation matrix
Description
This function computes the final correlation matrix by combining pairwise intermediate correlation matrix entries for Poisson-Poisson, Poisson-binary, Poisson-continuous, binary-binary, binary-continuous, and continuous-continuous combinations. If the resulting correlation matrix is not positive definite, a nearest positive matrix will be used.
Usage
overall.corr.mat(n.P, n.B, n.C, lambda.vec = NULL, prop.vec = NULL, coef.mat = NULL,
corr.vec = NULL, corr.mat = NULL)
Arguments
n.P |
Number of Poisson variables. |
n.B |
Number of binary variables. |
n.C |
Number of continuous variables. |
lambda.vec |
Rate vector for Poisson variables. |
prop.vec |
Proportion vector for binary variables. |
coef.mat |
Matrix of coefficients produced from |
corr.vec |
Vector of elements below the diagonal of correlation matrix ordered column-wise. |
corr.mat |
Specified correlation matrix. |
Value
A correlation matrix of size (n.P+N.B+n.C)*(n.P+N.B+n.C).
See Also
intermediate.corr.PP
, intermediate.corr.BB
, intermediate.corr.CC
,
intermediate.corr.PB
, intermediate.corr.PC
, intermediate.corr.BC
Examples
## Not run:
n.P<-1
n.B<-1
n.C<-1
lambda.vec<-c(1)
prop.vec<-c(0.3)
coef.mat<-matrix(c(0,1,0,0),4,1)
corr.vec=NULL
corr.mat=matrix(c(1,0.2,0.1,0.2,1,0.5,0.1,0.5,1),3,3)
finalmat=overall.corr.mat(n.P,n.B,n.C,lambda.vec,prop.vec,coef.mat,
corr.vec=NULL,corr.mat)
finalmat
## End(Not run)