intermediate.corr.PC {PoisBinNonNor} | R Documentation |
Computes the pairwise entries of the intermediate normal correlation matrix for all Poisson-continuous combinations given the specified correlation matrix.
Description
This function computes the pairwise entries of the intermediate normal correlation matrix for all Poisson-continuous combinations given the specified correlation matrix as formulated in Amatya and Demirtas (2015).
Usage
intermediate.corr.PC(n.P, n.B, n.C, lambda.vec = NULL, prop.vec = NULL, coef.mat = NULL,
corr.vec = NULL, corr.mat = NULL)
Arguments
n.P |
Number of Poisson variables. |
n.B |
Number of binary variables. |
n.C |
Number of continuous variables. |
lambda.vec |
Rate vector for Poisson variables. |
prop.vec |
Proportion vector for binary variables. |
coef.mat |
Matrix of coefficients produced from |
corr.vec |
Vector of elements below the diagonal of correlation matrix ordered column-wise. |
corr.mat |
Specified correlation matrix. |
Value
A correlation matrix of size n.P*n.C.
References
Amatya, A. and Demirtas, H. (2015). Simultaneous generation of multivariate mixed data with Poisson and normal marginals. Journal of Statistical Computation and Simulation, (85)15, 3129-3139.
See Also
intermediate.corr.PP
, intermediate.corr.CC
Examples
## Not run:
n.P=2
n.C=4
lambda.vec=c(2,3)
coef.mat=matrix(rep(c(0,1,0,0),each=4),4,byrow=TRUE)
corr.vec = NULL
corr.mat=matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3,1.0,-0.3,-0.3,-0.3,-0.3,
-0.3,-0.3,1.0,0.4,0.5,0.6,
-0.3,-0.3,0.4,1.0,0.7,0.8,
-0.3,-0.3,0.5,0.7,1.0,0.9,
-0.3,-0.3,0.6,0.8,0.9,1.0),6,byrow=TRUE)
intmatPC=intermediate.corr.PC(n.P,n.B=0,n.C,lambda.vec,prop.vec=NULL,
coef.mat,corr.vec=NULL,corr.mat)
intmatPC
#See also cmat.star in R package PoisNor
#cmat.star(no.pois=2,no.norm=4,corMat=corr.mat,lamvec=lambda.vec)
## End(Not run)