gen.PoisBinNonNor {PoisBinNonNor} | R Documentation |
Simulates a sample of size n from a set of multivariate Poisson, binary, and continuous data
Description
This function simulates a sample of size n from a set of multivariate Poisson, binary, and continuous data with pre-specified marginals and a correlation matrix.
Usage
gen.PoisBinNonNor(n, n.P, n.B, n.C, lambda.vec = NULL, prop.vec = NULL,
mean.vec=NULL, variance.vec=NULL, coef.mat = NULL, final.corr.mat)
Arguments
n |
Number of variates. |
n.P |
Number of Poisson variables. |
n.B |
Number of binary variables. |
n.C |
Number of continuous variables. |
lambda.vec |
Rate vector for Poisson variables. |
prop.vec |
Proportion vector for binary variables. |
mean.vec |
Mean vector of continuous variables. |
variance.vec |
Variance vector of continuous variables. |
coef.mat |
Matrix of coefficients produced from |
final.corr.mat |
Final correlation matrix produced from |
Value
A matrix of size n*(n.P + n.B + n.C), of which the first n.P columns are Poisson variables, the next n.B columns are binary variables, and the last n.C columns are continuous variables.
Examples
## Not run:
n=100000
n.P<-2
n.B<-2
n.C<-2
lambda.vec<-c(2,3)
prop.vec<-c(0.3,0.5)
mean.vec<-c(0,0)
variance.vec<-c(1,1)
coef.mat=matrix(rep(c(0,1,0,0), each=2),4,2,byrow=T)
corr.mat=matrix(0.4,6,6)
diag(corr.mat)=1
final.corr.mat=overall.corr.mat(n.P,n.B,n.C,lambda.vec,prop.vec,
coef.mat,corr.vec=NULL,corr.mat)
mymixdata=gen.PoisBinNonNor(n,n.P,n.B,n.C,lambda.vec,prop.vec,
mean.vec,variance.vec,coef.mat,final.corr.mat)
#Check marginals
#apply(mymixdata,2,mean)
#cor(mymixdata)
n=100000
n.P<-2
n.B<-2
n.N<-2
lambda.vec<-c(2,3)
prop.vec<-c(0.3,0.5)
mean.vec=c(1,0.5)
variance.vec=c(1,0.02777778)
skewness.vec=c(2,0)
kurtosis.vec=c(6,-0.5455)
coef.mat=fleishman.coef(2,skewness.vec, kurtosis.vec)
corr.mat=matrix(0.3,6,6)
diag(corr.mat)=1
final.corr.mat=overall.corr.mat(n.P,n.B,n.N,lambda.vec,prop.vec,
coef.mat,corr.vec=NULL,corr.mat)
mymixdata=gen.PoisBinNonNor(n,n.P,n.B,n.N,lambda.vec,prop.vec,
mean.vec, variance.vec,coef.mat,final.corr.mat)
#Check marginals
#apply(mymixdata,2,mean)[4:5]
#apply(mymixdata,2,var)[4:5]
#cor(mymixdata)
## End(Not run)
[Package PoisBinNonNor version 1.3.3 Index]