LP_TL_fit {Petersen}R Documentation

Fit a Lincoln-Petersen Model with Tag Loss using conditional likelihood

Description

This will take a data frame of capture histories, frequencies, and additional covariates (e.g., strata and/or continuous covariates) and the model for p1 and the tag retention probabilities and will use conditional likelihood (conditional on capture at time 2) to fit the model. The population abundance is estimated using a Horvitz-Thompson type estimator and the user can request abundance estimates for sub-sets of the population. Refer to references and appendices in vignettes for more details.

Usage

LP_TL_fit(
  data,
  dt_type = NULL,
  p_model,
  rho_model,
  all_beta.start = NULL,
  trace = FALSE
)

Arguments

data

Data frame containing the variables:

  • cap_hist Capture history (see details below)

  • freq Number of times this capture history was observed

plus any other covariates (e.g. discrete strata and/or continuous covariates) to be used in the model fitting.

dt_type

Double Tag type. Valid values are notD, twoD, and t2perm for two indistinguishable tags; two distinguishable tags, when the second tag is a permanent tag and cannot be lost, respectively.

p_model

Model for the captured probabilities. This can reference other variables in the data frame, plus a special reserved term ..time to indicate a time dependence in the capture probabilities. For example, p_model=~1 would indicate that the capture probabilities are equal across the sampling events; p_model=~..time would indicate that the capture probabilities vary by sampling events; p_model=~sex*..time would indicate that the capture probabilities vary across all combination of sampling events (..time) and a stratification variable (sex). The sex variable also needs to be in the data frame.

For some models (e.g., tag loss models), the ..time variable cannot be used because the conditional models (on being captured at the second event) end up having only have one capture probability (e.g., only for event 1) because of the conditioning process.

rho_model

Model for retention probabilities

all_beta.start

Initial values for call to optimization routine for the beta parameters (on the logit scale). The values will be replicated to match the number of initial beta parameters needed. Some care is needed here since the parameter order are for the p1 probabilities and then for the rho probabilities

trace

If trace flag is set in call when estimating functions

Details

The frequency variable (freq in the data argument) is the number of animals with the corresponding capture history.

Capture histories (cap_hist in the data argument) are character values of length 4.

If the tag loss model is two indistinguishable tags (dt_type="notD"), then valid capture histories are:

If the tag loss model is two distinguishable tags (dt_type="twoD"), then valid capture histories are the same as above except the history 111X is replaced by:

If the second tag is a permanent batch mark (dt_type="t2perm"), then valid capture histories are:

Value

An list object of class LP_TL_fit-notD or LP_TL_fit-twoD, or LP_TL_fit-t2per (depending on the type of double tag) with abundance estimates and other information with the following elements

After the fit is complete, use the LP_TL_est() function to obtain estimates.

Author(s)

Schwarz, C. J. cschwarz.stat.sfu.ca@gmail.com.

References

Seber, G. A. F., and R. Felton. (1981). Tag Loss and the Petersen Mark-Recapture Experiment. Biometrika 68, 211–19.

Hyun, S.-Y., Reynolds.J.H., and Galbreath, P.F. (2012). Accounting for Tag Loss and Its Uncertainty in a Mark–Recapture Study with a Mixture of Single and Double Tags. Transactions of the American Fisheries Society, 141, 11-25 http://dx.doi.org/10.1080/00028487.2011.639263

Examples


data(data_kokanee_tagloss)
fit <- Petersen::LP_TL_fit(data=data_kokanee_tagloss, p_model=~1, rho_model=~1, dt_type="notD")
fit$summary
est <- Petersen::LP_TL_est(fit, N_hat=~1)
est$summary


[Package Petersen version 2024.6.1 Index]