table.Drawdowns {PerformanceAnalytics} | R Documentation |
Worst Drawdowns Summary: Statistics and Stylized Facts
Description
Creates table showing statistics for the worst drawdowns.
Usage
table.Drawdowns(R, top = 5, digits = 4, geometric = TRUE, ...)
Arguments
R |
an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns |
top |
the number of drawdowns to include |
digits |
number of digits to round results to |
geometric |
utilize geometric chaining (TRUE) or simple/arithmetic chaining (FALSE) to aggregate returns, default TRUE |
... |
any other passthru parameters |
Details
Returns an data frame with columns:
From starting period, high water mark
Trough period of low point
To ending period, when initial high water mark is recovered
Depth drawdown to trough (typically as percentage returns)
Length length in periods
toTrough number of periods to trough
Recovery number of periods to recover
Author(s)
Peter Carl
References
Bacon, C. Practical Portfolio Performance Measurement and
Attribution. Wiley. 2004. p. 88
See Also
DownsideDeviation
maxDrawdown
findDrawdowns
sortDrawdowns
chart.Drawdown
table.DownsideRisk
Examples
data(edhec)
table.Drawdowns(edhec[,1,drop=FALSE])
table.Drawdowns(edhec[,12,drop=FALSE])
data(managers)
table.Drawdowns(managers[,8,drop=FALSE])
result=table.Drawdowns(managers[,1,drop=FALSE])
# This was really nice before Hmisc messed up 'format' from R-base
#require("Hmisc")
#textplot(Hmisc::format.df(result, na.blank=TRUE, numeric.dollar=FALSE,
# cdec=c(rep(3,4), rep(0,3))), rmar = 0.8, cmar = 1.5,
# max.cex=.9, halign = "center", valign = "top", row.valign="center",
# wrap.rownames=5, wrap.colnames=10, mar = c(0,0,3,0)+0.1)
# title(main="Largest Drawdowns for HAM1")