VolatilitySkewness {PerformanceAnalytics} | R Documentation |
Volatility and variability of the return distribution
Description
Volatility skewness is a similar measure to omega but using the second partial moment. It's the ratio of the upside variance compared to the downside variance. Variability skewness is the ratio of the upside risk compared to the downside risk.
Usage
VolatilitySkewness(R, MAR = 0, stat = c("volatility", "variability"), ...)
Arguments
R |
an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns |
MAR |
Minimum Acceptable Return, in the same periodicity as your returns |
stat |
one of "volatility", "variability" indicating whether to return the volatility skewness or the variability skweness |
... |
any other passthru parameters |
Details
VolatilitySkewness(R , MAR) = \frac{\sigma_U^2}{\sigma_D^2}
VariabilitySkewness(R , MAR) = \frac{\sigma_U}{\sigma_D}
where \sigma_U
is the Upside risk and \sigma_D
is the Downside Risk
Author(s)
Matthieu Lestel
References
Carl Bacon, Practical portfolio performance measurement and attribution, second edition 2008 p.97-98
Examples
data(portfolio_bacon)
MAR = 0.005
print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="volatility")) #expected 1.32
print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="variability")) #expected 1.15
MAR = 0
data(managers)
# print(VolatilitySkewness(managers['1996'], MAR, stat="volatility"))
print(VolatilitySkewness(managers['1996',1], MAR, stat="volatility"))