matchMoments {PearsonDS} | R Documentation |
Fitting (Incomplete) Set of Moments to Given Distribution Type
Description
For a given incomplete (skewness or kurtosis are missing) set of moments, the complete set of moments (mean, variance, skewness, and kurtosis) is calculated, using a given distribution type (if possible). Either the complete set of moments or the distribution parameters are returned.
Usage
matchMoments(mean, variance, skewness = NA, kurtosis = NA, type, moments,
skewness.sign = c("+", "-"), return.distribution = FALSE)
Arguments
mean |
target mean. |
variance |
target variance. |
skewness |
target skewness (maybe |
kurtosis |
target kurtosis (not excess kurtosis, maybe |
type |
required distribution type (either one of the numbers 0, 1, ..., 7 or one of
|
moments |
optional vector/list of mean, variance, skewness, kurtosis (not excess
kurtosis) in this order. Overrides the input parameters |
skewness.sign |
|
return.distribution |
|
Value
If return.distribution==TRUE
: list of parameters for Pearson
distribution. First entry gives type of distribution (0 for type 0,
1 for type I, ..., 7 for type VII), remaining entries give distribution
parameters (depending on distribution type).
If return.distribution==FALSE
: numeric vector with named elements
mean
, variance
, skewness
, kurtosis
corresponding
to a Pearson distribution of type type
.
Note
If the specified subset of moments does not match the distribution type or if too many moments are missing, an error is issued.
Author(s)
Martin Becker martin.becker@mx.uni-saarland.de
References
[1] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, Vol. 1, Wiley Series in Probability and Mathematical Statistics, Wiley
[2] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, Vol. 2, Wiley Series in Probability and Mathematical Statistics, Wiley
See Also
PearsonDS-package
,
Pearson
,
pearsonFitM
,
pearsonMoments
Examples
matchMoments(mean=0,variance=1,kurtosis=4.5,type=3,return.distribution = TRUE)
matchMoments(mean=0,variance=1,kurtosis=4.5,type="III")
matchMoments(mean=0,variance=1,kurtosis=4.5,type="III",skewness.sign="-")
matchMoments(mean=0,variance=1,skewness=-2,type="III",return.distribution = TRUE)
pearsonFitM(moments=matchMoments(mean=0,variance=1,skewness=-2,type="III"))
matchMoments(mean=0,variance=1,skewness=-2,type="III")