| matchMoments {PearsonDS} | R Documentation |
Fitting (Incomplete) Set of Moments to Given Distribution Type
Description
For a given incomplete (skewness or kurtosis are missing) set of moments, the complete set of moments (mean, variance, skewness, and kurtosis) is calculated, using a given distribution type (if possible). Either the complete set of moments or the distribution parameters are returned.
Usage
matchMoments(mean, variance, skewness = NA, kurtosis = NA, type, moments,
skewness.sign = c("+", "-"), return.distribution = FALSE)
Arguments
mean |
target mean. |
variance |
target variance. |
skewness |
target skewness (maybe |
kurtosis |
target kurtosis (not excess kurtosis, maybe |
type |
required distribution type (either one of the numbers 0, 1, ..., 7 or one of
|
moments |
optional vector/list of mean, variance, skewness, kurtosis (not excess
kurtosis) in this order. Overrides the input parameters |
skewness.sign |
|
return.distribution |
|
Value
If return.distribution==TRUE: list of parameters for Pearson
distribution. First entry gives type of distribution (0 for type 0,
1 for type I, ..., 7 for type VII), remaining entries give distribution
parameters (depending on distribution type).
If return.distribution==FALSE: numeric vector with named elements
mean, variance, skewness, kurtosis corresponding
to a Pearson distribution of type type.
Note
If the specified subset of moments does not match the distribution type or if too many moments are missing, an error is issued.
Author(s)
Martin Becker martin.becker@mx.uni-saarland.de
References
[1] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, Vol. 1, Wiley Series in Probability and Mathematical Statistics, Wiley
[2] Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, Vol. 2, Wiley Series in Probability and Mathematical Statistics, Wiley
See Also
PearsonDS-package,
Pearson,
pearsonFitM,
pearsonMoments
Examples
matchMoments(mean=0,variance=1,kurtosis=4.5,type=3,return.distribution = TRUE)
matchMoments(mean=0,variance=1,kurtosis=4.5,type="III")
matchMoments(mean=0,variance=1,kurtosis=4.5,type="III",skewness.sign="-")
matchMoments(mean=0,variance=1,skewness=-2,type="III",return.distribution = TRUE)
pearsonFitM(moments=matchMoments(mean=0,variance=1,skewness=-2,type="III"))
matchMoments(mean=0,variance=1,skewness=-2,type="III")