| PearsonII {PearsonDS} | R Documentation |
The Pearson Type II (aka Symmetric Beta) Distribution
Description
Density, distribution function, quantile function and random generation for the Pearson type II (aka symmetric Beta) distribution.
Usage
dpearsonII(x, a, location, scale, params, log = FALSE)
ppearsonII(q, a, location, scale, params, lower.tail = TRUE,
log.p = FALSE)
qpearsonII(p, a, location, scale, params, lower.tail = TRUE,
log.p = FALSE)
rpearsonII(n, a, location, scale, params)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
a |
shape parameter of Pearson type II distribution. |
location |
location parameter of Pearson type II distribution. |
scale |
scale parameter of Pearson type II distribution. |
params |
vector/list of length 3 containing parameters |
log, log.p |
logical; if |
lower.tail |
logical; if |
Details
Essentially, Pearson type II distributions are (location-scale transformations
of) symmetric Beta distributions, the above
functions are thus simple wrappers for dbeta, pbeta,
qbeta and rbeta contained in package stats.
The probability density function with parameters a,
scale=s and location=\lambda
is given by
f(x)=\frac{1}{|s|}\frac{\Gamma(2a)}{\Gamma(a)^2}\left(\frac{x-\lambda}{s}\cdot
\left(1-\frac{x-\lambda}{s}\right)\right)^{a-1}
for a>0, s\ne 0,
0<\frac{x-\lambda}{s}<1.
Value
dpearsonII gives the density, ppearsonII gives the
distribution function, qpearsonII gives the quantile function,
and rpearsonII generates random deviates.
Author(s)
Martin Becker martin.becker@mx.uni-saarland.de
References
See the references in Beta.
See Also
Beta,
PearsonDS-package,
Pearson
Examples
## define Pearson type II parameter set with a=2, location=1, scale=2
pIIpars <- list(a=2, location=1, scale=2)
## calculate probability density function
dpearsonII(seq(1,3,by=0.5),params=pIIpars)
## calculate cumulative distribution function
ppearsonII(seq(1,3,by=0.5),params=pIIpars)
## calculate quantile function
qpearsonII(seq(0.1,0.9,by=0.2),params=pIIpars)
## generate random numbers
rpearsonII(5,params=pIIpars)