PeakSegFPOPchrom {PeakSegOptimal} | R Documentation |
PeakSegFPOPchrom
Description
Find the optimal change-points using the Poisson loss and the
PeakSeg constraint. This function is a user-friendly interface to
the PeakSegFPOP
function.
Usage
PeakSegFPOPchrom(count.df,
penalty = NULL)
Arguments
count.df |
data.frame with columns count, chromStart, chromEnd. |
penalty |
non-negative numeric scalar: |
Value
List of data.frames: segments can be used for plotting the
segmentation model, loss summarizes the penalized PoissonLoss
and
feasibilty of the computed model.
Author(s)
Toby Dylan Hocking
Examples
library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
sample.id <- "McGill0106"
H3K4me3_XJ_immune_chunk1$count <- H3K4me3_XJ_immune_chunk1$coverage
by.sample <-
split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
one.sample <- by.sample[[sample.id]]
penalty.constant <- 3000
fpop.fit <- PeakSegFPOPchrom(one.sample, penalty.constant)
fpop.breaks <- subset(fpop.fit$segments, 1 < first)
library(ggplot2)
ggplot()+
theme_bw()+
theme(panel.margin=grid::unit(0, "lines"))+
geom_step(aes(chromStart/1e3, coverage),
data=one.sample, color="grey")+
geom_segment(aes(chromStart/1e3, mean,
xend=chromEnd/1e3, yend=mean),
color="green",
data=fpop.fit$segments)+
geom_vline(aes(xintercept=chromStart/1e3),
color="green",
linetype="dashed",
data=fpop.breaks)
max.peaks <- as.integer(fpop.fit$segments$peaks[1]+1)
pdpa.fit <- PeakSegPDPAchrom(one.sample, max.peaks)
models <- pdpa.fit$modelSelection.decreasing
models$PoissonLoss <- pdpa.fit$loss[paste(models$peaks), "PoissonLoss"]
models$algorithm <- "PDPA"
fpop.fit$loss$algorithm <- "FPOP"
ggplot()+
geom_abline(aes(slope=peaks, intercept=PoissonLoss, color=peaks),
data=pdpa.fit$loss)+
geom_label(aes(0, PoissonLoss, color=peaks,
label=paste0("s=", peaks, " ")),
hjust=1,
vjust=0,
data=pdpa.fit$loss)+
geom_point(aes(penalty.constant, penalized.loss, fill=algorithm),
shape=21,
data=fpop.fit$loss)+
geom_point(aes(min.lambda, min.lambda*peaks + PoissonLoss,
fill=algorithm),
shape=21,
data=models)+
xlab("penalty = lambda")+
ylab("penalized loss = PoissonLoss_s + lambda * s")
[Package PeakSegOptimal version 2024.1.24 Index]